Генетический контроль сортов ярового ячменя

В.В. Ващенко, кандидат биологических наук

Наведено результати генетичного аналізу сортів ярого ячменю за чотирма кількісними ознаками. Розглядається можливість добору генотипів у гібридних популяціях, що розщеплюються, за продуктивною кущистістю та масою 1000 насінин.

С помощью диаллельного анализа можно получить представление о генетическом контроле наследования признаков у сортов ярового ячменя, привлекаемых в гибридизацию [1, 2].

Диаллельные скрещивания с точки зрения селекции — наилучшие системы для создания полного набора комбинаций генов, которые имеют родительские сорта. Трудоемкость диаллельных скрещиваний компенсируется разнообразием гибридного материала для селекции. Сорт — стабильная самовоспроизводящаяся динамическая система, обладающая потенциалом биологической продуктивности и адаптивности [5].

Наиболее рациональных подход при гибридизации основан на использовании базового регионального (местного) сорта, на генотипе которого анализируются вклады и сбалансированность отдельных генетических систем. Перед селекционерами существует постоянная проблема: какие признаки отбирать или выбраковывать для получения из генетического материала перспективных кандидатов на новые сорта, за счет каких параметров формируются хозяйственные показатели [3, 4].

Различные условия среды могут быть причиной смены генетических параметров сортов. **Целью** данной работы и стало выявить генетические различия сортов и обосновать стратегию и тактику коллекционной программы [7].

Материал и методика. Объектом исследований служили 20 гибридных комбинаций 5 сортов ярового ячменя: Сталкер, Одесский 151, Донецкий 12, Донецкий 14, Адапт. Гибриды первого поколения и родительские сорта высевали на делянках площадью 1 м² в трехкратной повторности. В период учитывали наблюдения согласно И вели методическим рекомендациям. Структурный анализ проводили на 25 растениях каждой количественные повторности, изучали такие признаки: продуктивную кустистость (ПК), количество зерен в колосе (КЗК), массу зерна с растения (МЗР), массу 1000 зерен (МТЗ). Используя программы, составленные в лаборатории генетических основ селекции им. В.Я. Юрьева, проводили генетический анализ и определяли основные параметры Хеймана. Определяли следующие статистические и генетические компоненты:

 V_{OLO} – вариакса родителей;

Vr — вариакса одного из ряда диаллельной таблицы;

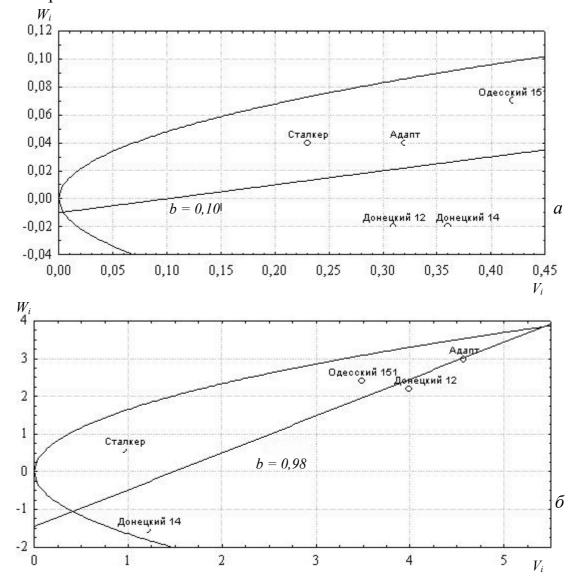
E – ожидаемый средовый компонент (точно такой же, как и наблюдаемый);

 D, H_{l} – компоненты вариации, обусловленные адаптивными эффектами генов;

F – среднее значение адаптивных и доминантных эффектов для всех рядов; H_2 — $H_1 = 1$ (*u*–*v*), где *u* – для положительных; *v* – доля отрицательных генов у родителей (или частота доминантных и рецессивных генов); где u+v=1; H_2 – алгебраическая сумма по доминантный эффект (как всем находящимся в гетерозиготном состоянии во всех гибридах). Отношение H/Dотражает среднюю доминантность, корень квадратный из него: $\sqrt{H_1D}$ – среднюю степень доминирования в каждом локусе; $H_2/4H_1$ – доля генов с положительными отрицательными эффектами И родителей; $(4DH_1)^{1/2} + F(4DH_1)^{1/2} - F$ — пропорция доминантных и рецессивных генов у родителей; h^2/H_2 отражает число групп генов, контролирующих признак и проявляющих при этом доминирование.

Результаты исследований. Анализируемые признаки имеют свои отличительные особенности генетического контроля, поэтому рассмотрим их отдельно (таблица).

Генетические компоненты признаков ярового ячменя


Tenema teekae kommonenmoi upastakoo apooco a anena				
Компоненты	Продуктивная	Количество	Масса зерна	Macca 1000
	кустистость	зерен в колосе	с растения	зерен
D	-0,0027	2,1982	0,0708	2,8171
F	-0.0750	-0,4356	-0,2975	-1,9173
r(Wi+Vi):Xr	-0,323	-0,974	-0,696	-0,997
H_1	1,1895	7,8929	3,1960	7,1747
H_2	1,1325	7,0613	2,9467	6,7819
$\sqrt{H_{_{I}}D}$	20,840	1,895	6,718	1,596
h^2	5,3079	27,1430	12,8927	31,0258
E	0,0260	0,5326	0,0490	0,2600
$1/4H_2/H_1$	0,238	0,224	0,231	0,236
H_1/D	434,320	3,591	45,138	2,547
h^2/H_2	5	4	4	5
$b W_i/V_i$	0,0995691	0,976866	0,3725128	1,100545
$\sqrt{4DH_1+F}$ / $\sqrt{4DH_1-F}$	0,207	0,901	0,524	0,648
F_{I}	0,0858	4,8317	0,5659	-7,0408
F_2	-0.3716	-3,9101	-1,2278	-8,0338
F_3	-0.0971	-7,2170	-0,8557	-1,8380
F_4	0,0601	-4,4692	-0,5600	-1,4749
F_5	-0,0522	8,5866	0,5901	8,8010

Продуктивная кустистость. Анализ генетических компонентов показал определенные закономерности. Величина H_1 достоверно отличается от своей ошибки, показывая доминирование в некоторых локусах. Средняя степень

доминирования (H/D) и средняя степень доминирования в каждом локусе $(\sqrt{H/D} > 1)$ и указывают на сверхдоминирование, что согласуется с рис. 2, a.

В локусах, проявляющих доминирование, произведение частот доминантных и рецессивных генов близко к 0,25 (1/4 $H_2/H_1 = 0,24$), т.е. u = v = 0,5. Отношение общего числа доминантных генов к общему числу у рецессивных у родительских сортов меньше единицы, что свидетельствует о проявлении отрицательных генов. Заметим, что данное отношение находится в значительной зависимости от параметра F_I , который и отражает разность $u_I - v_I$. В нашем опыте по продуктивной кустистости F имеет отрицательное значение, что подтверждает преобладание рецессивных генов.

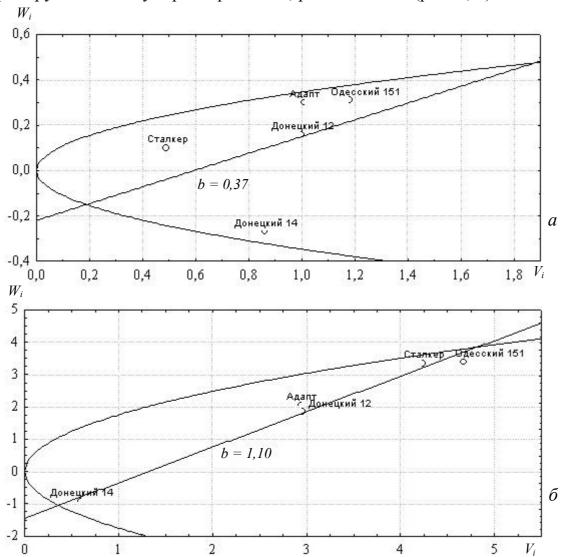

Число групп генов (h^2/H_2) , контролирующих рассматриваемый признак и при этом проявляющих доминирование, составляет 5. Кроме того, графики дают сведения об относительной доле доминантных и рецессивных генов у разных сортов.

Рис 1. Зависимость W_i от V_i для признака: a – продуктивная кустистость; δ – количество зерен в колосе

Количество зерен в колосе. Линия единичного наклона пересекает ось OW с отрицательной стороны, показывая сверхдоминирование. Это подтверждают и данные таблицы, где D=2,198, а $H_I=7,892$. Средняя степень доминирования 1,895 также указывает на сверхдоминирование. Поскольку F отрицательно, то преобладают рецессивные гены, это характерно для сортов Одесский 151, Адапт, Донецький 12. Число групп генов контролирующих количество зерен в колосе составляет 4 (рис. $1, \delta$).

Масса зерна с растения. H_1 значимо отличается от единицы, указывая на доминирование и сверхдоминирование. Что касается отношения числа доминантных генов к рецессивным у родительских сортов, то здесь нужно отметить их своеобразие. У сортов Сталкер и Донецкий больше доминантных, а у Одесского 151, Адапт, Дон 12 больше рецессивных генов. Число групп генов, контролирующих массу зерна с растения, равно также 4 (рис. 2, a).

Рис. 2. Зависимость W_i от V_i для признаков: a — масса зерен с растения; δ — масса 1000 зерен

Масса 1000 зерен. Показатели H_1 , H_2 указывают на сверхдоминирование. Линия единичного наклона, пересекающая ось OW_1 , подтверждает данные генетических параметров. По этому признаку наибольшее количество

доминантных генов имел сорт Донецкий 14 ($F_5 = 8,081$), отрицательный знак этого показателя у других сортов указывает на преобладание рецессивных генов. Число групп генов, контролирующих массу 1000 зерен, равно 5. Таким образом, сорт Донецкий 14 можно рекомендовать как донор массы 1000 зерен (рис. 2, δ).

Достоверность генетической информации в рамках аддитивнодоминантной модели зависит от симметрии частот доминантных и рецессивных
аллелей в каждом локусе и от направленности доминирования. Поэтому
селекционерам необходимо использовать только бесспорные параметры:
среднюю степень доминирования в локусе, среднее значение произведения
доминантных и рецессивных генов в локусе, отношение общего числа
доминантных генов к общему числу рецессивных генов у всех родительских
линий, меру направленности доминирования, число групп генов, проявляющих
доминирование. Получаемая информация отражает лишь конкретные спектры
генов, детерминирующие признак в конкретной экологической точке.

Проведенный анализ по выявлению генетического контроля наследования количественных признаков у ярового ячменя показал, что они обусловлены аддитивно-доминантной генетической системой.

В локусах, проявляющих доминирование, произведение частот доминантных и рецессивных генов близко 0,25.

У родительских сортов преобладают рецессивные гены, а число групп генов, контролирующих признак и при этом проявляющих доминирование, невелико – четыре—пять.

Библиография

- 1. Літун П. П. Генетичний контроль ознак продуктивності та адаптивна технологія селекційного процесу зернових культур / П.П. Літун, Л.В. Бондаренко, Л.С. Осипова // Селекція і насінництво. К., 1992. Вип. 72. С. 104–108.
- 2. Літун П.П. Генетичний контроль і онтогенетичний аналіз складних ознак у рослин / Павло Павлович Літун // Селекція і насінництво. К., 1992. Вип. 72. С. 82–86..
- 3. Молчан И.М. Спорные вопросы в селекции растений / И.М. Молчан, Л.Г. Ильина, П.И. Кубарев // Селекция и семеноводство. М., 1996. № 1–2. С. 36–51.
- 4. Кириченко В.В. Методологические проблемы адаптивной селекции растений / В.В. Кириченко // Адаптивная селекция растений. Теория и практика : тезисы междунар. конф. Харьков, 2002. С. 3–5.
- 5. Генетика макропризнаков и селекционно-ориентированные генетические анализы в селекции растений / [Литун П.П., Коломацкая В.П., Белкин А.А., Садовой А.А]. Харьков, 2004. 134 с.
- 6. Литун П.П. Генетика количественных признаков. Генетические скрещивания и генетический анализ / П.П. Литун, Н.В. Проскуркина. К. : УМК ВО, 1992. 98 с.
- 7. Драгавцев В.А. Генетика признаков продуктивности яровых пшениц в Западной Сибири / Драгавцев В.А., Цильке Р.А., Рейтер Б.Г. Новосибирск : Наука, 1984.-232c.