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Abstract. Plant phenotyping is a comprehensive evaluation of complex traits in plants, such as growth, 
development, resistance, architecture, physiology, ecology, yield, as well as the basic measurement of individual 
quantitative parameters that form the basis for more complex traits. This article provides an analysis of 
visualization methods applied in plant phenotyping and presents software for image processing. The analysis 
included the most significant global research in plant phenotyping. The directions of work on plant phenotyping 
were carried out by well-known geneticists, breeders, and engineers at the Institute of Oil Crops of the National 
Academy of Agrarian Sciences. Based on the global experience and the results of research at the Institute of 
Oilseed Crops of the National Academy of Agrarian Sciences, we propose the following development of plant 
phenotyping in domestic agricultural science. Integrated approaches of well-known selection-process 
methodologies, from molecular to field, are necessary for the development of sustainable agriculture, ensuring 
high yields, and the use of limited resources. Despite significant progress in the molecular and genetic approaches 
in recent years, quantitative analysis and systematization of plant phenotypes (plant structures and functions) have 
become major challenges. Plant phenotyping is a science that combines genomics, ecophysiology, and plant 
agronomy using modern automated selection and systematization methods. The functional plant body 
(phenotype) is formed during plant growth and development through dynamic interactions between genotype and 
the surrounding environment in which plants grow. These interactions determine the practical result of crop 
cultivation in terms of quantity and quality of production. This includes crop yield and its quality: oil content, seed 
size, shape, and seed density, among other factors. Systematizing oilseed crops based on a complex of phenotypic 
characteristics, taking into account gene penetrance and trait inheritance, will reduce the time and effort required 
for decision-making. Mechanotronic systems for material separation, selection, and classification using neural 
networks will significantly reduce costs. Therefore, one of the solutions to this problem is the development of a 
methodology for systematic genotyping of sunflower based on phenotypic expression using neural networks.  
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Introduction  
 

Ensuring an adequate supply of agricultural products to meet the 
needs of the human population, which is expected to exceed 9 billion 
by 2050, is a monumental challenge for agriculture in terms of 
increasing crop yields (Cleland, 2013; Bera, 2019; Gaigbe-Togbe et al., 
2022). This goal is particularly complex because the average annual 
growth rate of agricultural production is only 1.3%, and it lags behind 
population growth. By bridging genotype with phenotype, it becomes 
possible to select high-yielding, stress-resistant plants much more 
rapidly and effectively than is currently feasible (Phillips, 2010). 
The lack of access to phenotyping capabilities limits our ability to 
analyze the genetics of quantitative traits related to growth, yield, and 
stress adaptation (McMullen et al., 2009). Improving phenotyping is of 
paramount importance for harnessing developments in the breeding and 
seed production process for creating new plant varieties and hybrids.  

Plant phenotyping is a comprehensive assessment of complex plant 
traits such as growth, development, resilience, architecture, physiology, 
ecology, yield, along with basic measurements of individual quantitati-
ve parameters that serve as the foundation for more intricate characte-
ristics (Jannink et al., 2010; Newell & Jannink, 2014; Pieruschka & 
Schurr, 2019). The plant phenotype encompasses these complex traits, 
and examples of their direct measurable parameters include root 
morphology (Walter et al., 2009; Clark et al., 2011; Flavel et al., 2012; 
Kumar et al., 2014), biomass (Menzel et al., 2009; Golzarian et al., 
2011), leaf characteristics (Jansen et al., 2009; Arvidsson et al., 2011), 
fruit attributes (Brewer et al., 2006; Monforte et al., 2014), traits related 

to yield (Duan et al., 2011), photosynthetic efficiency (Bauriegel et al., 
2011; Aliieva et al., 2022), as well as responses to biotic and abiotic 
stressors (Balachandran et al., 1997; Rao & Laxman, 2013). Given the 
rapid development of high-throughput genotype screening in plant 
breeding and genomics to enhance growth, yield, and resistance to 
various biotic and abiotic stresses, there is a call for more efficient and 
reliable phenotyping data to support modern genetic cultivars. 
Achieving this goal involves expertise from biological sciences, 
computer science, mathematics, and engineering in the field of 
phenotyping.  

In recent years, high-throughput phenotyping platforms have been 
deployed in growth chambers or greenhouses (Granier et al., 2006; 
Deikman et al., 2012). These platforms utilize robotics, precise control 
of the surrounding environment, and visualization technologies 
(hardware and software) to assess plant growth and productivity (Hart-
mann et al., 2011; Yang et al., 2013).  

 
Methods of plant phenotyping  
 
To analyze the interactions between genotype and environment 

(G × E) and model phenotypic responses, the plant phenotyping 
scheme typically involves experimental design, quantitative measure-
ments, and interpretation of results. The experimental design should 
account for different growth environments (controlled environments or 
field conditions). It also concurrently includes infrastructure for plant 
cultivation, monitoring of the surrounding environment, substrate 
processing, and biosafety installations. Quantitative measurement offers 
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significant advantages over new visualization technologies but requires 
standardized experimental protocols, including image sensor calibration 
and precise data preprocessing, as parts of best practices in plant 
phenotyping (White et al., 2012; Fiorani & Schurr, 2013). The interpre-
tation of results necessitates the integration of experimental metadata 
into data frameworks for the measured phenotype, genomic data, and 
environmental data (Berger et al., 2010; Walter et al., 2012).  

Modern visualization methods have high resolution and provide 
the visualization of multidimensional and multiparametric data. 
Visualization methods are used for the quantitative assessment of 
complex plant traits in the dynamic context of their growth in 
controlled environmenttal systems or field conditions (Mühlich et al., 
2008). Image-analysis algorithms are the key drivers for advancing 

image-based research, which require the quantitative evaluation of plant 
phenotypes for components such as roots, stems, leaves, seeds, flowers, 
etc. (Biskup et al., 2007; Paproki et al., 2012).  

Visible imaging is primarily used to measure parameters of plant 
architecture, such as predicted biomass based on images, leaf area, 
color, growth dynamics, shoot strength, seed morphology, root 
architecture, assessment of leaf disease severity, yield, and fruit number 
and distribution (Table 1) (Fiorani & Schurr, 2013; Araus & Cairns, 
2014; Deery et al., 2014). Fluorescent imaging has been used to detect 
diseases in genetic disease resistance. Thermal infrared imaging can 
characterize plant temperature to detect differences in conductance as a 
measure of the plant's response to water status and transpiration rate for 
adaptation to abiotic stress.  

Table 1 
Visualization Methods Applied in Plant Phenotyping  

Visualization 
Method Sensor Resolution Processed Data Phenotypic Parameters 

Visible  
Light  
Imaging 

Visible spectrum-
sensitive cameras 

Whole organs  
or organ parts,  
temporal changes 

Grayscale or color images 
(RGB channels) 

Geometric morphological dimensions, color, growth dynamics, 
architecture and shape, yield traits, germination rate (Granier et al., 
2006; Ikeda et al., 2010; Joosen et al., 2010; Arvidsson et al., 2011; 
Clark et al., 2011; Duan et al., 2011; Golzarian et al., 2011; Joosen 
et al., 2012; Hoyos-Villegas et al., 2014) 

Fluorescent 
Imaging 

Fluorescent  
cameras 

Entire shoot  
or leaf tissue,  
temporal changes 

Pixel maps of emitted 
fluorescence in red and 
far-red regions 

Photosynthetic status (variable fluorescence), quantum yield, non-
photochemical quenching, leaf health, shoot architecture (Moshou 
et al., 2005; Jansen et al., 2009; Bürling et al., 2010; Harbinson et al., 
2012; Mishra et al., 2012; Rousseau et al., 2013) 

Thermal  
Imaging 

Near-infrared  
cameras 

Entire shoot  
or leaf tissue,  
temporal changes 

Pixel-wise surface 
temperature maps  
in the infrared region 

Crown or leaf temperature, insect infestations (Jones et al., 2009; 
Munns et al., 2010; Araus et al., 2012)  

Near-
Infrared 
Imaging 

Near-infrared 
cameras, multispectral 
line-scan cameras, 
active thermography 

Temporal changes  
or single-point 
analyses of shoots  
and crowns 

Continuous or discrete 
spectra for each pixel in 
the near-infrared region 

Seed water composition, leaf area index (Spielbauer et al., 2009; 
Munns et al., 2010; Bolon et al., 2011; Sakamoto et al., 2011; 
Shibayama et al., 2011; Cook et al., 2012) 

Hyperspectra
l Imaging 

Near-infrared instru-
ments, spectrometers, 
hyperspectral came-
ras, thermal cameras 

Continuous  
or discrete spectra 

Crop vegetative cycles, 
indoor time-series 
experiments 

Leaf and canopy water status, leaf and canopy health, crop growth, 
canopy coverage (Moshou et al., 2005; Liu et al., 2010; Huang et al., 
2012; Matsuda et al., 2012; Yang et al., 2014)  

3D  
Imaging 

Stereocamera 
systems, time-of-
flight cameras 

Time-series full-frame 
capture with varying 
resolutions 

Depth maps Shoot architecture, leaf angle distribution, canopy structure, root 
architecture, height (Moshou et al., 2005; Klose et al., 2009; Van der 
Heijden, 2012; Busemeyer et al., 2013)  

Laser  
Scanning 

Wide-range laser 
scanning devices 

Time-series full-frame 
capture with varying 
resolutions 

Depth maps, 3D point 
clouds 

Shoot biomass and structure, leaf angle distribution, canopy structure, 
root architecture, height, stem (Biskup et al., 2007; Fang et al., 2009; 
Paulus et al., 2014a, 2014b)  

Magnetic 
Resonance 
Imaging 

Magnetic resonance 
imaging (MRI) 
devices 

200–500 µm;  
1–600 s 

Water imaging (1H) 3D morphometric parameters, water content (Rascher et al., 2011; 
Hillnhütter et al., 2012; Poorter et al., 2012)  

Positron  
Emission  
Tomography 

Positron emission 
detectors for short-
lived isotopes (e.g., 
11CO2) 

1–2 mm;  
10 s–20 min 

Radiotracer mapping and 
co-registration with 
positron emission signals 

Transport partitioning, sectoriality, flow rate (Poorter et al., 2012) 

Computed 
Tomography 

X-ray computed 
tomography and 
digital radiography 

100 µm and below; 
hours 

Voxel and tissue slices 3D morphometric parameters, grain quality (Karunakaran et al., 2004; 
Flavel et al., 2012; Garbout et al., 2012)  

 
Spectroscopy imaging can provide insights into the drivers of 

growth dynamics using tools such as measuring spatial-temporal 
growth patterns during experiments. It also aids in collecting plant 
spectroscopy data for quantitative assessment of vegetation indices, 
water content, seed-composition parameters, and more. Currently, 
visualization methods for plant phenotyping primarily include fluores-
cent imaging, thermal infrared imaging, visible light imaging, spectro-
scopy imaging, and other methods (magnetic resonance imaging, 
positron emission tomography, and computed tomography).  

Visible light imaging is widely utilized in agriculture due to its low 
cost and ease of operation and maintenance (Barbagallo et al., 2003; 
Paproki et al., 2012). In controlled environments, visible light imaging 
is mainly used to analyze shoot biomass, yield traits, awn features, 
uptake and germination rates, leaf morphology, shoot strength, seed 
morphology, and root-system structure (Kozlov et al., 2007; Delagran-
ge & Rochon, 2011; Eliceiri et al., 2012). Standard preprocessing and 
image analysis algorithms are employed to process the acquired 
images, often implemented in libraries and software packages (Table 2) 
(Abràmoff et al., 2004; Bradski & Kaehler, 2008; Schindelin et al., 
2012). Working with image-analysis libraries like OpenCV requires 

programming skills. However, packages like ImageJ have a user-
friendly graphical interface, sets of basic functions for solving common 
image-analysis tasks, and the capability to create computational 
pipelines from elementary operations for processing sets of images in a 
consistent manner. The advancement of image-analysis methods has 
led to the development of numerous programs aimed at determining 
phenotypic characteristics.  

 
Analysis of the global experience in plant phenotyping  
 
Let us analyze some of the most significant research on plant 

phenotyping. Studying the root system in the traditional sense is 
practically impossible. For instance, any disturbance to the roots during 
excavation can affect their arrangement and integrity. Therefore, 
scientists at the Jülich Research Center use positron emission 
tomography to study images of live roots in soil. Investigating 3D 
images of root architecture and the distribution of various substances in 
them allows for the examination of physiological characteristics of the 
root system.  
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Table 2  
Image processing software  

Name Description Interface 

Matlab A package  
of versatile applications 

Command line     

ImageJ Expandable software for image  
analysis and processing 

Graphical              

Fiji A software package  
based on ImageJ 

Graphical             

OpenCV 
A library of computer vision algorithms,  
image processing, and general-purpose  

numerical algorithms 

Programmatic      

FARSIGHT A set of tools for image  
processing and analysis 

Command line    

ProStack 
A platform for managing  

image processing and analysis  
software modules 

Graphical         
 

51 



Agrology, 2023, 6(3) 

In the studies conducted at the China Agricultural University, 3D 
models of 20 sugar beet genotypes were reconstructed using the 
Structure-from-Motion (SFM) method at three growth stages in field 
conditions (Xiao et al., 2020). An automated pipeline for data proces-
sing was developed, including processing point clouds of individual 
plants and extracting their distinctive features. Common features such 
as plant height, maximum plant canopy area, and the volume of the 
convex hull of numerous points were extracted based on the overall 
plant structure. Distinctive plant features were utilized to study their 
correlation with sugar-beet biomass. Such automated conveyor 
measurements can be effective for plant phenotyping in field conditions 
and provide a foundation for new breeding programs.  

At the Jülich Research Center, the spatial-temporal dynamics of 
vegetation are mapped using image spectroscopy and three-dimensio-
nal reconstruction of plants. Utilizing unique tools for remote sensing of 
individual plants, it is possible to assess the condition of each plant or 
entire areas, select the best ones, and provide them with additional 
nutrition or necessary plant protection measures. Different colors of 
plants can indicate susceptibility to pests, diseases, inadequate growth 
conditions, or genetic variations and plant vulnerability. A method for 
seed phenotyping has been developed as a result of the research (Yang 
et al., 2021). The main advantages of this method novel synthetic 
method for generating and augmenting images, which works to prepare 
a large dataset of labeled images such as automatic segmentation, is that 
it reduces the manual annotation workload significantly. The proposed 
transfer-learning method, achieved by finely tuning the weight coeffici-
ents of a pre-trained model, can significantly reduce computational 
costs. The pipeline proposed in the research can be extended to segment 
specimens of other high-productivity objects and measure their 
morphology. Efficient seed germination is an important trait for both 
field and greenhouse crops. Large-scale germination experiments are 
labor-intensive and prone to observer errors, necessitating the use of 
automated methods. Researchers from the Earlham Institute (Colmer 
et al., 2020) introduced the SeedGerm system, which combines low-
cost hardware and open-source software for seed germination 
experiments, automated seed imaging, and machine learning-based 
phenotypic analysis. The software can process multiple batches of 
images simultaneously and perform reliable analysis of traits related to 
similarity and viability, both in formats of comma-separated values 
(CSV) and processed image (PNG).  
 
Experience of the Institute of Oilseed Crops of the NAAS  
in plant phenotyping for oilseed crops  

 
As we can see, the global practice of quantitative plant phenoty-

ping is evolving and becoming an essential component of the breeding 

process. Therefore, over the past 10 years, the Institute of Oilseed 
Crops of the National Academy of Agrarian Sciences (IOC NAAS) has 
conducted a series of relevant research projects involving renowned 
geneticists, breeders, and engineers. 

For some applications of sunflower, particularly confectionery 
purposes, seed color analysis is of utmost importance. The Institute of 
Oilseed Crops has conducted a series of scientific studies on this trait. 
Visual analysis revealed that all the seeds from collection samples were 
categorized into 12 groups. In several lines, the inheritance of seed coat 
coloration was studied, and a collection of sunflower lines with defined 
genetic control of different color types was assembled. The collection 
included samples with specified seed coat coloration types and establi-
shed genetic control. In total, three seed coat layers and ten alleles of 
four genes were described (Horokhivets & Vedmedieva, 2013). Based 
on the results of genetic research, a method for determining sunflower 
seed coloration has been developed (Vedmedeva & Poliakova, 2016). 
By visual assessment, direct scanning of sunflower seeds, and image 
analysis, there had been identified intensity ranges for four channels, 
and the genotypes were grouped, helping to avoid subjectivity in seed 
color assessment. For the development of a scale from the genetic 
collection of 700 lines, 120 samples were selected based on seed color 
characteristics. From each of the 120 samples, 100 seeds were selected. 
All seeds were divided into 10 groups of 5 colorations, which numeri-
cally confirmed the visual distribution of samples, and for which mean 
values and errors were calculated. 

To automate the process of analyzing and selecting sunflower seed 
samples, a method and device for automatic sunflower seed phenoty-
ping have been developed (Aliiev, 2019a, 2019b, 2019d). The novelty 
of the technical solution has been confirmed by the patent for invention 
and awarded the President of Ukraine's Prize (Decree of the President 
of Ukraine No. 595/2020 dated December 29, 2020). The method of 
automatic seed phenotyping includes the following stages (Fig. 1) 
(Aliiev, 2019c, 2019e, 2019f). The sequential irradiation of the seed 
region using electromagnetic radiation with different wavelengths, 
namely 465–470 nm (red spectrum – R), 515–520 nm (green spect-
rum – G), and 620–625 nm (blue spectrum – B), is carried out using a 
camera and software based on the OpenCV computer vision library, 
including the HighGui module. This allows for obtaining digital images 
of the seed batch in each of the three types of irradiation. Afterward, the 
cvtColor and inRange modules of the OpenCV library are applied to 
process the acquired images in the HSV color space (where Hue 
corresponds to the primary tone, Saturation to color saturation, and 
Value to the amount of light) and their subsequent transformation into 
black and white images. Next, the getStructurin-gElement and erode 
modules of the OpenCV library are used to perform morphological 
transformations of the obtained images.  

 

  
Fig. 1. Method and device for automatic sunflower seed phenotyping  
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The main goal of these transformations is to remove random 
speckles, noise, and merge areas that may be separated by shadows. 
Using the obtained images, a corresponding data matrix regarding the 
coloration of each seed from the batch is determined for three types of 
irradiation (Aliiev, 2019f, 2020). As a result of the conducted research, 
there were developed histograms of color distribution in sunflower seed 
areas in the RGB color space under different lighting conditions. 
The analysis of these histograms showed that the most distinct differ-
rences were under red illumination conditions in a uniform color envi-
ronment. Additionally, seed color index C was introduced, represented 
as a matrix of frequencies f of the corresponding maxima (max) in the 
RGB color space under red seed illumination (Fig. 2) (Aliiev, 2020).  

Similar work on studying seed coloration was conducted for oil 
flaxseed. The main types of colorations were evaluated, and a method 
for determining the coloration of flaxseed was developed and patented. 
A scale of digital indicators for the main types of colorations was 
developed: yellow, gray-brown, brown, and dark brown (Fig. 3). The 
use of the proposed method will contribute to the acceleration and 
standardization of the process of describing flaxseed samples and lines, 
allowing for their identification based on seed color (Yahlo, 2007; 
Shevchenko et al., 2017; Liakh et al., 2019).  

For sunflower in various applications, the size and shape of seeds 
are important factors. At the IOC NAAS, a feature collection of 
sunflower lines based on seed size has been created and registered. 
Its main parameters and variability have been identified. A series of 
lines were studied in crosses to determine the inheritance pattern of 
seed size traits (Horokhivets & Vedmedieva, 2013; Vedmedeva & 
Poliakova, 2016). The results indicate a polygenic recessive mode of 
inheritance (Fig. 4).  

The seed size trait is highly variable and depends on various 
factors. Even within a single head, seed sizes can vary significantly 
(Nosal et al., 2017; Nosal et al., 2018; Vedmedieva & Nosal, 2018, 
2020). Research results have shown that seeds within the head are 
arranged in accordance with Fermat's spiral law (Fig. 5). In this spiral, 
seed sizes gradually decrease. The entire head can be divided into three 
zones. In the first zone, seeds are relatively large due to plant density in 
the sowing, the second tier also has a sufficiently high weight of 
1,000 seeds and large seed size, while the third tier is either not 
developed or absent under unfavorable conditions. Figure 5 presents the 
research results of sunflower lines with large seeds based on their 
location within the head (Vedmedieva et al., 2017; Aliiev & Vedme-
dieva, 2023).  

 

  
Fig. 2. Histogram of maximum channel values in the RGB color space under red illumination of sunflower samples  

 
Fig. 3. Histograms of the distribution of colors in oil flaxseed  

53 



Agrology, 2023, 6(3) 

 
Fig. 4. Collection of sunflower lines based on seed size  

 
Fig. 5. Study of changes in phenotypic traits of sunflower seeds depending on their location within the head  

The results of the research of changes in sunflower seed size within 
the head allow for evaluating plumpness. According to the studies of 
the impact of edge effects on large-seeded hybrids and varieties, it was 
found that the most significant effect was observed on the plumpness of 
the third layer (middle) of the head.  

During the research, specialized software for seed composition 
analysis based on images was developed (Fig. 6). This software is used 
to transform full-color images with a 24-bit color depth into black and 
white images with a 1-bit depth. This process is carried out using 
segmentation. Subsequently, the images are processed using morpholo-
gical operations and the Canny edge detector for automatic contour 
detection of each seed in the generated black and white image.  

After determining the seed contours in the image, the software 
automatically calculates parameters for each seed, such as length (L), 
width (B), area (S), and perimeter length (P) (Shevchenko & Aliiev, 
2022).   

Fig. 6. Research of the geometric dimensions of sunflower seeds  
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Research of the photosynthetic activity of safflower under the 
influence of agronomic practices was conducted in field conditions. 
To determine the net photosynthetic productivity, it was necessary to 
measure the leaf area of plants at three stages of development: budding, 
flowering, and physiological maturity. Leaf area was determined 
through the following steps (Fig. 7): selecting five random plants from 
each plot, separating the leaves from the plants, scanning the leaves 
using a Canon CanoScan LIDE 300 scanner with 1200 pixels 
resolution in the RGB color model, saving the files in .jpg format, 
converting the color model of the obtained files into raster images using 
Adobe Photoshop software, calculating the number of black pixels in 
the raster image using the ImageJ software package, calculating the leaf 
surface area by inputting calibration coefficients using the MS Excel 
software, and averaging the leaf surface area values. The research 
results revealed a correlation between safflower yield, water 
consumption, and net photosynthetic productivity (Aliieva et al., 2022; 
Vedmedieva et al., 2022).  

 
Fig. 7. Calculation algorithm of leaf surface area  

Besides seed traits, it is also important to phenoty coloration in 
other plant organs. The types of coloration in the outer flowers of 

sunflower have been studied and a collection of 270 samples was 
created (Soroka & Lyakh, 2019; Soroka et al., 2020; Vedmedeva, 
2020). It was studied based on coloration and the genetic control of the 
main color types. Through visual and genetic identification, the lines 
were classified into coloration classes. The patented method for 
determining coloration of the outer flowers of sunflower includes direct 
scanning of the flowers on a glass scanner and recording the results in 
jpg format. Subsequently, Photoshop is used to generate average RGB 
color values through a filter (Fig. 8) (Vedmedieva, 2014). Samples are 
categorized according to the proposed scale, and the primary flower 
color is determined. They are then grouped with further identification 
of sunflower line coloration types (Soroka et al., 2017b; Vedmedieva, 
2019a, 2019b, 2020; Vedmedieva & Makhova, 2019).  

The process of identifying types of coloration of the sunflower 
petal was carried out using the Statistica software. The identification 
steps include the following (Fig. 9): data summarization in the three-
dimensional RGB color space; data clustering process; representation 
of clustering results in the three-dimensional RGB color space; 
development of a neural network algorithm for identification of a color 
group; application of the neural-network algorithm for grouping 
sunflower varieties by petal coloration; creation of diagrams illustrating 
genetic differences in petal coloration among the line groups.  

 
Conclusions  
 
Building upon the global experience and the research results of the 

Institute of Oilseeds Crops of the NAAS (IОС NAAS), the following 
advancement in plant phenotyping in Ukrainian agrarian science is 
proposed. 

Integrated approaches from molecular to field-level methodologies 
are essential for the development of sustainable crop production, 
ensuring high yields, and optimizing limited resources. Despite 
significant progress in molecular and genetic approaches in recent 
years, the quantitative analysis and systematization of plant phenotypes 
(plant structures and functions) remain major challenges. Plant 
phenotyping is a science that links genomics, ecophysiology, and plant 
agronomy, utilizing modern automated methods for selection and 
systematization. The functional plant body (phenotype) develops 
during the growth and development of plants through dynamic 
interactions between the genotype and the surrounding environment in 
which the plants grow. These interactions determine the practical 
outcome of crop cultivation in terms of quantity and quality of 
production. This includes seed yield and its quality, such as oil content, 
seed size, shape, and density, among other factors. 

 

 
Fig. 8. Method for determining the coloration of sunflower outer flowers  
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Fig. 9. The process of identifying types of sunflower petal coloration  

Determining the coloration of plant organs in various crops allows 
for the expansion of collections of corresponding crop varieties, 
increasing genetic diversity, and serving various purposes. Coloration 
of flower petals is relevant for overall plant phenotyping, protection of 
plant breeders' rights, seed purity, and other needs. For instance, oil flax 
varieties exhibit different coloration of their corollas, and collections of 
safflower have already been studied for four types of corolla coloration. 
This enables the emphasis of authorship for plant varieties in the State 
Register of Plant Varieties Suitable for Distribution in Ukraine. 

Systematizing oilseed crops based on a complex of phenotypic 
characteristics, considering gene penetrance and trait heritability, will 
facilitate decision-making, while mechatronic systems for material 
separation, selection, and classification using neural networks will 
significantly reduce costs. Therefore, one of the ways to address this 
challenge is the development of a methodology for systematizing 
sunflower genotypes based on their phenotypic expression using neural 
networks.  
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