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Loss of small rivers across the steppe: climate change or the 
hand of man? Case study of the Chaplynka river
Iryna Chushkina a, Hennadii Hapich b, Olena Matukhno a, Artem Pavlychenko a, 
Volodymyr Kovalenko b and Yevheniia Sherstiuk a

aFaculty of Water Management Engineering and Ecology, Dnipro University of Technology, Dnipro, Ukraine; 
bInstitute of Nature Management, Dnipro State Agrarian and Economic University, Dnipro, Ukraine

ABSTRACT
Innumerable small steppe rivers have been degraded and lost 
through the construction of dikes and dams, as well as changing 
regional hydrology. A failed restoration project involving mechan
ical clearance of the channel of the small river Chaplynka is inves
tigated. Field and laboratory studies included sampling and analysis 
of water and silt deposits. Muller’s Іgeo class, categorising the tech
nogenic load on the water ecosystem, and a bottom accumulation 
coefficient illustrate the degradation of the catchment and the 
absence of hydraulic connection along the erstwhile river channel. 
The river flow has not returned. The most obvious shortcoming of 
the riverbed clearing operations was the dumping of the dredged 
material on the riverbank, from where it was washed back into the 
channel. Moreover, excavation of the channel drained shallow 
aquifers that are no longer replenished by depleted precipitation 
and infiltration.

KEYWORDS 
Small river; catchment; 
restoration; bottom deposits

Introduction

Management of water resources is a key task in the conservation of water and wetland 
ecosystems and, also, socio-economic development [1,2]. The usual way to store useful 
volumes of water is to create ponds and reservoirs by building dikes and dams. There are 
more than 50 000 such ponds within Ukraine [3], mostly in the industrialised parts of the 
steppe zone [4]; their construction, more than 60–80 years ago to provide water for 
industry and irrigation [5], turned small rivers into fragmented, artificial wetlands with 
stagnant water [6,7].

Rivers have suffered long-term pollution and water abstraction [8]; at the same time, 
changes in land use and climate have decreased the natural discharge [9–11]. Historical 
breaking of the sod that protected the soil surface and loss of humus that maintained soil 
structure, cut infiltration and transmission of rain and snowmelt to the groundwater. 
Absence of winter snow cover also cuts the replenishment of groundwater and, so, there 
is less streamflow in summer [12]. In recent decades, loss of self-clarification, excess 
evaporation and cessation of flow have much changed the composition of natural waters 
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in the small rivers of the Ukrainian steppe [13,14] – to the extent that the continued use 
of their water is hazardous [15]. More than 10 000 small rivers were irretrievably lost in 
the period up to 1991 [16]; this number has since doubled.

River restoration usually requires the removal of dikes and dams [17,18] and clearing 
the riverbed [19]. Assessment of the ecologically safe level of water use is a multi-criteria 
issue; improvement of an ecosystem requires solving several optimisation problems. 
Therefore, we analyse the interactions of human activity and natural factors in the 
degradation and disappearance of small river ecosystems in the steppe zone: the geo
graphy and hydrology of the catchment, changes in water quality, composition of bottom 
sediments which are reliable indicators of pollution and the ecological state of a river 
[20–24], and the effects of riverbed clearing.

Materials and methods

Study area

The Chaplynka River basin in the Dnipropetrovsk Region of Ukraine (Figure 1). The 
land slopes from northeast to the southwest. The river length is 62 km; the catchment 
area 565 km2 – surface water occupies 1.1%, ploughland 75%. The density coefficient of 
the network (taking account of rivers less than 10 km long) is 0.14 km/km2; total stream 
gradient is 64.4 m; its weighted average slope is 0.85 m/km; mean flow is 20 million m3 

per year but only 5.4–12.5 million m3 in dry years. At present, there are 32 ponds and 3 
small reservoirs in the catchment, with a total volume of 9.8 million m3 and a surface area 
of 4.5 km2.

Research methodology

Field routes were established along the main riverbed and within the catchment. 
Photographs were taken of the state of the river before and after riverbed clearing. 
Water and bottom sediments were sampled. Indicators of water quality were established 
and laboratory studies carried out to determine the chemical elements in bottom sedi
ments. Processing of the results made use of QGIS, AutoCAD, and Microsoft Excel 
software. When determining the contamination of bottom sediments by heavy metals, 
G Muller’s Igeo classes [25] were applied: 

where Cn is measured concentration of element n in bottom sediments; Bn is geo
chemical background (maximum permissible) concentration of element n; 1.5 is 
a coefficient that considers natural fluctuations.

These geoaccumulation indices were used to assign bottom sediments to dif
ferent quality classes. To estimate the ratio of pollutant concentrations in bottom 
sediments (Cbs) and in water (Cwater), a bottom accumulation coefficient (BAC) 
was used: 

INTERNATIONAL JOURNAL OF ENVIRONMENTAL STUDIES 261



Assessment of the degree of chemical pollution of surface water based on BAC 
characterises the chronic toxicity of a waterbody. Table 1 presents the evaluation 
criteria.

Salt composition of water

The following indicators were determined: water pH, dry residue, total hardness, sul
phates, chlorides, calcium, magnesium, and phosphates [26]. Samples were collected 

Figure 1. Catchment the Chaplynka River.

262 I. CHUSHKINA ET AL.



along the entire river length in accordance with current standards [27–30]. Water 
mineralisation was determined using an AquaKut portable TDS-metre.

Composition and particle-size distribution of bottom sediments

The elemental composition of the bottom sediments was determined by X-ray fluores
cence analysis of powdered samples using an Elvax (Elvatech, Ukraine) desktop spectro
meter which provided high accuracy, speed, and low detection limits for a wide range of 
elements; the error is ≤0.05%. Particle-size distribution was determined by a combination 
of wet sieving and sedimentation, following Boichenko [31].

Results

Since the mid-20th century, reservoirs have been constructed that held about 10 million m3 

of water. Subsequently, the river flow ceased and the channel became overgrown. Climate 
warming and redistribution of precipitation in time and quantity are implicated but so is 
land use change. Even in the nineteenth century, Dokuchaev [32] and, later, Izmailsky [33] 
attributed the drying of the steppe not so much to lesser rainfall as to the breaking of the 
sod and the resulting loss of humus and soil structure which gravely reduced the soil’s 
infiltration capacity and transmissivity. As a result, rainfall and snowmelt generate immedi
ate, erosive runoff rather than recharging groundwater and baseflow. Soil conditions are 
now a great deal worse than in Dokuchaev’s day, so are the droughts. Torrential summer 
rains are not retained in the soil, and winter snow cover has decreased, further decreasing 
replenishment of the groundwater that supports river base flow. Moreover, the ponds 
intended to retain water resources also increased the evaporative area, contributing further 
irreversible water loss.

With the falling water level, the river began to disappear. For the last decade, 
the main characteristics of annual flow distribution according to different years of 

Table 1. Criteria to assess the technogenic load on a hydroecosystem.
Characterstics of the levels of bottom sediment pollution in terms of Іgeo classes

Іgeo Іgeo 

class
Level of bottom sediment 

pollution with heavy metals
Technogenic load Ecological status of the hydroecosystem (class 

of the bottom sediment state)
>0 0 Unpolluted Slight 

(slightly 
hazardous)

Standard (satisfactory condition)
>0– 

1
1 Unpolluted to slightly polluted

>1– 
2

2 Moderately polluted Moderate 
(moderately 
hazardous)

Risk zone 
(unfavourable condition)

>2– 
3

3 Medium-polluted

>3– 
4

4 Heavily polluted Considerable 
(hazardous)

Crisis zone (very unfavourable condition)

>4– 
5

5 Heavily to extremely polluted

>5 6 Extremely polluted Extreme 
(extremely 
hazardous)

Disaster zone (catastrophic condition)

Criteria to evaluate environmental status of the hydroecosystem in terms of bottom accumulation coefficient (BAC)
BAC <103 Relatively satisfactory

103-104 Environmental emergency
>104 Environmental crisis
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availability (Table 2) and water balance (Figure 2) confirm the influence of 
climatic factors on the river flow – which is actually available only in winter 
and spring.

Moreover, non-compliance with environmental protection and water legislation has 
degraded the ecosystem by exceeding the norms of reservoir storage, non-compliance 
with riparian water protection zones, intensive ploughing of the catchment, and both 
chemical and biological pollution of reservoirs. Combination of all these factors in the 
absence of flow and self-cleaning ability of the river led to rapid degradation of the 
ecosystem. In response, over the period 2017–2021, ‘ecological sanitation’ of the 
Chaplynka River basin was undertaken by removal of silt from the stream channel. 
According to the main data of engineering and hydrogeological prospecting works, the 
need to dredge silt to a depth of up to 2 m was established (Figure 3).

Excavators were used to remove silt from the channel and spread it on the river banks 
(Figure 4(a)). But, it is now apparent that the dredging operation only made matters 
worse. In many places, the channel is now significantly shallower or dried completely 
(Figure 4(b)) and, in many places, overgrown with tall vegetation.

Water quality

The water quality was determined in reaches of the river where reservoirs and ponds are 
located. The chemical composition of the water of this small river is determined by 
surface runoff contaminated by eroded soil and fertilisers leached from arable land, 
runoff from the streets of the towns and villages, and groundwater inflow. Since ground
water inflow is insignificant, the chemical composition of water can change dramatically 
from point to point. Table 3 presents a comparison of previous and recent data.

Table 2. Annual distribution of the Chaplynka River flow, %.

Annual water content 
(probability, Р)

Months

yearI II III IV V VI VII VIII IX X XI XII

25% 11.4 33.5 18.1 9.1 7.9 3.5 1.9 0.9 1.3 2.7 4.1 5.6 100
50% 9.8 7.3 47.7 19.3 6.3 3.3 1.6 1.0 0.7 1.5 3.2 4.6 100
75% 7.7 9.4 44.4 22.9 6.0 2.7 0.6 0.1 0 0.3 1.2 4.4 100
95% 4.2 10.6 49.8 25.6 4.3 1.8 0.4 0 0 0.2 0.7 2.4 100

I II III IV V VI VII VIII IX X XI XII
Precipitation 15.42 11.43 10.16 12.33 15.6 22.51 20.57 15.6 13.06 13.602 14.87 16.3
Streamflow 0.226 0.568 2.669 1.372 0.231 0.097 0.021 0 0 0.011 0.129 0.13
Evaporation/infiltration 15.19 10.85 7.497 10.96 15.37 22.21 20.65 5.597 13.06 13.591 16.19 16.2

0

5

10

15

20

25

Figure 2. Water balance of the river basin (probability, Р = 95%), million m3.
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Water quality has deteriorated significantly over less than three decades: concentra
tions sometimes almost doubling, as in the case of dry residue at point 4 (village of 
Magdalinivka) and, at this point, all chemical parameters show an increase in concentra
tion. Dry residue and sulphate levels exceed permissible limits for all sites in all years of 
research; magnesium and iron are also beyond the limits. Perhaps surprisingly, miner
alisation generally decreases downstream. This may be explained by the lack of any 
hydraulic connection between individual reservoirs on the river; the natural watercourse 
has been transformed into a succession of artificial reservoirs now functioning as separate 
ecosystems.

Bottom sediments

Bottom sediments of watercourses and reservoirs accumulate various salts, compounds 
of heavy metals, and suspended substances of natural and man-made origin. Their 
qualitative composition yields a reliable assessment of the risk of exposure to heavy 
metals for aquatic organisms; the hydrochemical parameters of surface water are usually 
more variable in time.

Bottom samples were collected and analysed in September 2022 from five different 
river reaches. Their particle-size distribution is fairly consistent (Figure 5) with 10–25% 
clay, 40–50% silt and 30–40% sand. Their elemental composition (Table 4) is strikingly 
more variable.

The data reveal that Ca, Fe, K, and Si predominate; Mg, Cd, W, Ge, and As show the 
lowest concentrations. Figure 6 shows the spectral analysis of the content of chemical 
elements.

In general, the results of the spectral analysis and calculations of Igeo classes demon
strate intensive accumulation of heavy metals in the bottom sediments. To assess the 
ratio of pollutant concentrations in bottom sediments and in water, a bottom accumula
tion coefficient (BAC) was determined. Figure 7 represents the obtained parameters 
calculated according to formulas 1 and 2.

Figure 3. Engineering and geological section in terms of the research object. hQ4 – modern organic and 
mineral formations; aQ3–4 – quaternary alluvial deposits; dQ3–4 – quaternary deluvial deposits; 1 – soil 
and vegetation layer (humic and silty clay loam); 2 – flow silt with much organic matter and residual 
algae; 3 – brownish, dense, wet, and silty clay loam; 4 – brownish, dense, wet, and very soft clay loam; 
5 – light-grey, dense, wet, and plastic clay loam.
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Assessment of the degree of pollution of river bottom sediments with heavy metals 
according to Igeo classes shows a significant technogenic load on the ecosystems. The 
analysed elements fall into Іgeo classes 0 (unpolluted) to 6 (extremely polluted) but may 
be grouped conditionally into a first group (Fe, Mn, S, Zn, V, and Pb) that impose an 
insignificant to moderately dangerous technogenic load on the water ecosystem 
although, at the same time, the status of the ecosystem is defined as relatively satisfactory. 
The second group of elements (Ni, Cr, Cu, and Co) has a significant and extremely 
hazardous impact on the ecosystem and the status of the ecosystem corresponds to 
a crisis or, even, catastrophe.

Figure 4. State of the Chaplynka River before (а) during and (b) after riverbed clearing.
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The accumulation of heavy metals and predominance of high-order Igeo classes that 
indicate severe and extreme pollution in the headwaters is striking – the impact of 
economic activity and urban development in this part of the catchment. It emphasises 
the fact that there is no hydraulic connection between the successive reservoirs in the 
riverbed, already mentioned in respect of water quality.

Table 3. Salt composition indices of the Chaplynka River.

Components of chemical 
composition

MAC*

Indices at the points of analysis 
(downstream from the headwaters to the mouth)

4 3 2 1

Years of sampling 2007     2022 1994     2022 2020   2022 1994     2020

Distance from the mouth km – 61.2 38.5 6.6 0
Dry residue, mg/dm3 �1000 3374 7182 2075 2019 3200 2007 1242 2640
Sulphates, SO4 mg/dm3 �500 1537 4325 743 894.6 1291 861 373 1355
Chlorides, Cl mg/dm3 �350 149 213 248 149.1 270 157 44.0 146
Calcium, Са2+ mg/dm3 200.0 90.2 168 107 100.8 144 112 142 144
Magnesium, Mg2+ mg/dm3 50.0 229 834 114 239 199 219 66.0 70.4
Ammonium nitrogen, NH4 mg/dm3 2.0 <0.15 – 0.23 – 0.16 – 0.16 0.14
Nitrite nitrogen, NO2 mg/dm3 3.3 0.7 – 0.010 – – – 0.010 –
Phosphates, PO4 mg/dm3 0.7 – 5.2 0.40 – <0.05 0.308 1.20 <0.05
Total iron, Fe mg/dm3 0.3 0.05 1.6 0.10 0.6 <0.05 0.108 0.30 <0.05
Copper, Cu, mg/dm3 1.0 <0.01 <0.01 – – – – – –
Manganese, Mn mg/dm3 0.1 <0.01 <0.01 – – 0.09 – – 0.05
Total hardness mg-equiv/dm3 – 23.3 46.6 14.8 14.8 23.6 14.38 12.5 13.0
рН value – 6.5–8.5 7.4 8.59 8.1 7.94 7.9 8.47 8.2 8.17
Chemical composition of water – – Sulphate-hydrocarbonate-magnesium-sodium

*Hygienic standards of water quality to meet potable, household, and other needs of the population (Order of the 
Ministry of Health Protection of Ukraine #721 of 02.05.2022). Access mode: https://zakon.rada.gov.ua/laws/show/ 
z0524–22#Text

Figure 5. Particle-size distribution of bottom sediments (numbers 1–5 correspond to the sampling 
points).
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Attempting to combine different criteria of pollution results in an untidy picture. 
For instance, iron is assigned to the ecological crisis category at all studied sites 
according to its level of accumulation and gross content, although it is assessed as 
unpolluted according to the Igeo class of impact on the water ecosystem. An excess of 
manganese and copper is highlighted separately in sites 1 and 4. Other elements 
(calcium, sulphur and chlorine) correspond to the parameters of relatively satisfactory 
situation and, in some cases, extreme environmental situation. Taken as a whole, the 
data testify to a substantial technogenic load and ecological crisis in this small river 
ecosystem.

Discussion

The most obvious shortcoming of the riverbed clearing operations was the dumping of 
the dredged material on the riverbank, not stabilised by immediate sowing of perennial 
grasses. Most of this material was subsequently washed back into the channel by rain and 
meltwater. Complete removal or secure storage would have been better options; alter
natively, where the material is of appropriate quality, it might have been spread on 
agricultural land [33] although this option requires more research [34].

Another factor is non-compliance of the technical standards for the depth of dredging. 
Dredging by excavators led to a significant deepening of the channel, in some areas by 
more than 2 m. Removal of fine-textured alluvium that previously plugged aquifers 
abutting the channel provoked a rapid discharge of these aquifers into the river but, 
subsequently, on account of the lack of recharge of the aquifers, river flows ceased.

Table 4. Total content of chemical elements in the bottom sediments.

Chemical element

Concentration at the points of analysis 
(downstream from the headwaters to the mouth), %

5 4 3 2 1

Si 6.443 ± 0.079% 5.701 ± 0.073% 6.790 ± 0.077% 32.225 ± 0.116% 23.704 ± 0.102%
Ca 27.143 ± 0.202% 36.622 ± 0.183% 30.390 ± 0.185% 2.667 ± 0.118% 13.567 ± 0.135%
Fe 23.875 ± 0.108% 18.042 ± 0.091% 20.491 ± 0.095% 7.160 ± 0.034% 10.081 ± 0.043%
K 5.271 ± 0.228% 3.735 ± 0.209% 4.178 ± 0.207% 5.809 ± 0.209% 5.063 ± 0.156%
Al 0.311 ± 0.148% 0.233 ± 0.138% 0.286 ± 0.136% 3.149 ± 0.080% 2.790 ± 0.086%
Cl 1.191 ± 0.047% 0.836 ± 0.042% 0.801 ± 0.042% 1.609 ± 0.032% 1.381 ± 0.031%
Ti 2.239 ± 0.072% 2.143 ± 0.076% 1.932 ± 0.068% 1.304 ± 0.033% 1.120 ± 0.032%
Mn 0.825 ± 0.021% 0.370 ± 0.017% 2.272 ± 0.031% 0.109 ± 0.006% 0.405 ± 0.009%
S 0.550 ± 0.008% 0.459 ± 0.008% 0.616 ± 0.008% <0.005% 0.419 ± 0.006%
Zn 0.111 ± 0.005% 0.074 ± 0.005% 0.079 ± 0.005% 0.024 ± 0.001% 0.044 ± 0.002%
P 0.007 ± 0.015% 0.007 ± 0.016% 0.008 ± 0.015% 0.018 ± 0.008% 0.042 ± 0.010%
Ni 0.094 ± 0.010% 0.084 ± 0.009% 0.085 ± 0.009% 0.032 ± 0.003% 0.034 ± 0.003%
Cr 0.058 ± 0.024% 0.052 ± 0.025% 0.046 ± 0.022% 0.034 ± 0.009% 0.031 ± 0.010%
V 0.073 ± 0.042% 0.064 ± 0.044% 0.053 ± 0.039% 0.017 ± 0.018% 0.025 ± 0.018%
Cu 0.047 ± 0.006% 0.019 ± 0.005% 0.040 ± 0.005% 0.007 ± 0.002% 0.019 ± 0.002%
Pb 0.041 ± 0.005% 0.030 ± 0.005% 0.033 ± 0.005% 0.013 ± 0.002% 0.015 ± 0.002%
Ga 0.013 ± 0.004% 0.010 ± 0.004% 0.009 ± 0.004% 0.003 ± 0.001% 0.004 ± 0.001%
Co 0.010 ± 0.037% <0.033% 0.013 ± 0.034% <0.012% 0.003 ± 0.014%
Se <0.005% 0.003 ± 0.004% 0.005 ± 0.004% 0.001 ± 0.001% <0.001%
Mg <0.736% <0.720% <0.680% <0.252% <0.279%
Cd <0.055% <0.054% <0.051% <0.017% <0.017%
W <0.011% <0.010% <0.010% <0.003% <0.004%
Ge <0.004% <0.004% <0.004% <0.001% <0.001%
As <0.005% <0.004% <0.004% <0.001% <0.001%
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Figure 6. Content of chemical elements in bottom sediments as determined by energy dispersive 
spectrometry (the drawings are numbered according to sampling points).
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The Chaplynka River and similar small rivers of the steppe zone of Ukraine 
lack a natural buffer zone that would allow their ecosystems to function [35]. In 
fact, the norms of the Water Code of Ukraine regulating the provision of water 
protection zones and riparian protection strips are not met for any of the small 
rivers. The banks are densely built-up, cultivation extends almost to the water’s 
edge, and river flow is obstructed by many and various blind dams and crossings, 
mostly constructed illegally. So, strings of reservoirs have no hydraulic connec
tion, and there is a rapid accumulation of silt in erstwhile channels and a lot of 
pollution.

The complete degradation and disappearance of the river and its ecosystem is evident, 
and the identified failings of the river-renewal project offer lessons for future restoration 
work in the steppe zone. Moreover, the standards of maximum permissible norms of 

Figure 7. Bottom sediment contamination of the Chaplynka River in terms of Igeo-classes and 
assessment of the hydroecosystem status by the bottom accumulation coefficient (BAC).
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various elements in bottom sediments require further consideration; currently, Ukraine has 
no regulatory standards. This is a substantial task for further research and development.

Conclusions

● Worldwide, small rivers are assailed by land use change and climate change. Across the 
steppes, they are degraded and disappearing because of regional changes of land use and 
precipitation, all leading to a decrease or complete disappearance of the infiltration 
process as the main factor of groundwater replenishment and, accordingly, further 
groundwater feed of the rivers. This is exacerbated by blockage of the rivers by dams and 
diversions; chemical and biological pollution; non-compliance with technical and 
technological regulatory water use norms; and violation of the water and nature 
protection legislation regarding riparian protection strips.

● In the case of the Chaplynka river, some after-effects of an unsuccessful riverbed 
clearing project are analysed. The river almost completely dried up. The most 
obvious and direct causes are excessive deepening of the channel, storage of the 
dredged material on the riverbank without appropriate reclamation and consolida
tion, and the absence of proper surface and groundwater inflow.

● In the absence of hydraulic connection along the erstwhile river channel, water 
quality deteriorated dramatically, for instance, a doubling of dry residue in the last 
25 years and, generally, greater concentration of pollutants in the headwaters. The 
natural watercourse has been transformed into a string of artificial reservoirs, 
functioning as separate ecosystems.

● The defined Igeo criteria indicate a heavily polluted ecosystem with a significant techno
genic load. Ni, Cr, Cu, and Co stand out among the elements having a negative impact. 
The assessment of the hydroecosystem state based on the bottom accumulation coeffi
cient indicates the level of ecological crisis in terms of iron, manganese and copper, 
whereas calcium, sulphur and chlorides correspond to a relatively satisfactory situation. 
Accumulation of heavy metals in the headstream of the river and predominance of 
higher-order Igeo classes, corresponding to the level of severe and extreme pollution, 
emphasise the fact that there is no hydraulic connection between the string of reservoirs 
in the riverbed.

● The Chaplynka River exemplifies the deterioration of water quality, loss of water 
resources in toto, degradation of aquatic ecosystems across the steppe, and the need 
for further development of ways and means to evaluate complex technical and 
natural ecosystems of rivers and their catchments.
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