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Electrically Permeable Interface Crack )
with a Contact Zone in a 1D Piezoelectric | @
Quasicrystal

Volodymyr V. Loboda, Volodymyr B. Govorukha, and Alla E. Sheveleva

Abstract The bimaterial composed of two 1D piezoelectric hexagonal quasicrys-
tals having a crack along the material interface is considered. Mixed mode phonon
and phason remote loading resulting from the plane strain conditions at infinity
are applied. The phonon field represents the lattice vibrations similar to crystals
while the phason field depicts the quasi-periodic rearrangement of atoms inherent
for quasicrystals. Because in the framework of the open crack model the electrome-
chanical fields have an oscillating singularity at the crack tips, therefore, the artificial
contact zone model is considered. Introducing the artificial contact zone at the right
crack tip the problem is reduced to a combination of combined Dirichlet—Riemann
and Hilbert boundary value problems. These problems are solved analytically for
any length of the artificial contact zone. Clear analytical expressions for phonon and
phason mechanical parameters are derived. The real contact zone is obtained from
the satisfaction of the additional conditions that lead to the transcendental equations
with respect to the relative contact zone length. After solving these equations, the
stress intensity factors and the energy release rates are found analytically.
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1 Introduction

The quasicrystaline materials, found by Shechtman et al. [1] are nowadays exten-
sively used in various areas of technology and engineering. Particularly, quasicrys-
taline bi-materials with piezoelectric effect are applied in smart structures. In the
most comprehensive form the generalized elasticity theory of quasicrystals (QCs)
is given in [2]. Depending on the directions number of the atom arrangement
quasiperiodicity, QCs can be categorized into three sub-classes, i.e. 1D, 2D and
3D [3]. One-dimensional (1D) quasicrystals exhibit one quasi-periodic axis, while
the perpendicular plane reveals classical crystalline properties.

Crack analysis has been extended to mechanics of QCs in the recent decade and
up to now, a lot of research efforts to crack analyses for QCs have been made. For
example, using the mathematical theory of elasticity of QCs, Fan et al. [4] and Li et al.
[5] studied the moving screw dislocation and straight dislocation in one-dimensional
hexagonal QCs. Gao et al. [6] considered the problem of cubic quasicrystal media
with an elliptic hole or a crack. Liu et al. [7] studied the interaction of dislocations
with cracks in one-dimensional hexagonal QCs based on the analytic function theory.
One-dimensional hexagonal quasicrystal with a planar crack in an infinite medium
was studied in [8]. The method of crack path prediction under mixed-mode loading
in 1D quasicrystals was developed in [9].

Piezoelectricity is an important physical property of QCs. Green’s functions of
one-dimensional quasicrystal bi-material with piezoelectric effect were investigated
in [10]. A set of 3D general solutions to static problems of 1D hexagonal piezo-
electric quasicrystals is obtained in [11] with use of displacement functions. Three-
dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals were
studied in [12] and a penny-shaped dielectric crack in the quasicrystal plate of
the same structure was considered in [13]. Two asymmetrical limited permeable
cracks emanating from an elliptical hole in one-dimensional hexagonal piezoelectric
quasicrystals were considered in [14].

It is worth to be mentioned that interface cracks in bi-material and multi-material
components are the main reason of failure. An open crack model for an interface crack
in an isotropic bimaterial was investigated in [15] and the contact zone model for such
crack was developed in [16]. Interface cracks with contact zones were considered for
anisotropic [17], piezoelectric [18, 19] and piezoelectric/piezomagnetic [20] bima-
terials by Professor Herrmann and his co-authors. Thermal fields for such problems
were taken into account in [21-23]. Moving cracks between anisotropic and piezo-
electric materials were considered in [24] and [25, 26], respectively. The influence
of the electric permeability on an interface crack in a piezoelectric bimaterial was
studied in [27, 28]. Interface cracks in piezoelectric bimaterials under compressed-
shear loading were considered in [29, 30]. A polling direction influence on fracture
parameters of a limited permeable interface crack in a piezoelectric bi-material was
investigated in paper [31].

The cracks between different quasicrystals materials have not been sufficiently
studied till now. To our knowledge an arbitrarily shaped electrically impermeable
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interface crack in an one-dimensional hexagonal thermo-electro-elastic quasicrystal
bi-material was investigated in [32, 33] by an analytically-numerical method and
a plane problem for an electrically permeable interface crack in a 1D piezoelectric
QC was studied analytically in paper [34]. Multiple numbers of electrically perme-
able cracks on the interface between two one-dimensional piezoelectric quasicrystals
were investigated in [35]. Besides, several publications related to the antiplane case
of an interface crack in QCs were recently published. A crack between dissimilar
one-dimensional hexagonal piezoelectric quasicrystals with electrically permeable
and impermeable conditions at the crack faces under anti-plane shear and in-plane
electric loadings was examined in [36]. An interface crack with mixed conducting-
permeable electric conditions in a 1D piezoelectric quasi-crystalline space under
the action of out of plane phonon and phason shear stresses and in-plane electric
field was analytically considered in [37]. The problem of multiple collinear elec-
trically permeable interface cracks between dissimilar one-dimensional hexagonal
quasicrystals with piezoelectric effects under anti-plane shear and in-plane electric
loading has been studied in [38].

It was shown in paper [34] that oscillating singularity appears at the crack tips of
an electrically permeable interface crack considered in the framework of the open
crack model in a 1D piezoelectric QC. It means that the contact zones take place at
the crack tips in reality. To the authors knowledge contact zones for interface cracks
in piezoelectric QCs have never been considered earlier. Studying of this problem is
the main purpose of the present paper.

2 Formulation of the Problem and Constitutive Relations

Consider the plane problem in (x, 0, x3) plane fora crack c < x; < b,x3 =0in
the interface between two semi-infinite 1D piezoelectric hexagonal quasicrystalline
spaces with (x, 0, x;) coincident with the periodic plane and the x3-axis identical to
the quasi-periodic direction (Fig. 1). In this figure ¢;; and K; are the elastic constants
in the phonon and phason fields, respectively; the R; represent the phonon—phason
coupling elastic constants; e, and €, are the piezoelectric constants in the phonon
and phason fields, respectively; &;; are the permittivity constants. It is assumed that
the crack is electrically permeable and uniformly distributed phonon (¢ *°, t*) and
phason H stresses are prescribed at infinity.
The constitutive relations in this case have the form

o1 circiz 0 en 0 e3 0 Ry

. E; W31
o3 (= |cicy O e3¢ — | 0 e3 E +| 0 R W [
013 0 0 26‘44 €13 €15 0 3 R3 0 33
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Fig. 1 A crack between two 1D piezoelectric QCs
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The equilibrium equations and geometric equations are the following

o11,1 +0133=0,031,1 +0333=0,D11 +D33=0, H3; 1 + H333=0, (4)

&ij = %(ui.j +tuji), Ei=—¢;, Wy = W3;. )
Herein i, j = 1, 3 and the denotation “,” represents the derivative operation for the
space variables; u;, W3 and ¢ are the phonon displacements, the phason displacement,
and the electric potential, respectively; the atom arrangement is periodic in the x; —x;
plane and quasi-periodic in the x3-axis; o;; and ¢;; are the phonon stresses and strains,
respectively; Hj; and Ws; are the phason stresses and strains, respectively; D; and
E; are the electric displacements and electric fields, respectively; the polarization
direction is along the x3-axis.

It is also assumed that the crack surfaces are traction-free for x; € [c,a] = L
whereas they are in frictionless contact for x; € (a, b) = L,, and the position of the
point a is arbitrarily chosen for the time being. Such assumption means that we’ll
consider only one zone of the crack faces contact. In reality such zones arise at both
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interface crack tips [15], but one of them is usually extremely short and its influence
upon the longer contact zone is negligibly small [18]. It should be emphasized as
well that the longer contact zone arises at the right crack (point b in our case) tip for
7% > 0 if the lower material is “softer” then the upper one and it arises there for
7% < 0 in the opposite case. Without loss of generality the last alternative is used
in this paper for definiteness.

The interface conditions can be written in the following form

afé:O, 0_%:0, H_f;:O, () =0, (D3)=0forc <x; <a (6)

o3 =0,(u3) =0, (W3) =0, <‘733> =0,

‘ ()
(Hy) =0, (p) =0, ( D3) =0forx, € (a,b)
(013) =0, {o33) = 0, (Hy3) = 0, (u1) =0, (u3) =0, ®)
(W3) =0, () =0, ( D3) =0forx; ¢ (c,b).

In paper [34] the following expressions were obtained

033 (x1,0) + mjs Hyz (x1,0) +i - mjio(3 (x1,0) = OF (x1) + 7,07 (x1), (9

njful (D) +i - nga(us o)) +ings(Wix)) = ©F (x) — ©7 (x1),  (10)

where j = 1, 3, 5; ©(z) are the functions analytic in the whole complex plane except
the crack region x; € (c, b), x3 = 0; (-) means the jump of the function through
the material interface; mjs = S5, mj; = —iSj;,nj1 = Y1, nj3 = —i¥j3,nj5 =
—iY;5,Y; =8S;p; y; and S]T = [S;1, Sj3, §js5] are, respectively, the eigenvalues and
eigenvectors of the matrix (y p” + p’), where the matrix p is constructed from
the matrix G of dimension 5 x 5 by crossing out the second and fourth rows and
columns from this matrix; G = BOD~, D = A® — A% B®)~1BD, A B
are matrixes similar to eponymous matrixes defined in [39] (m = 1 corresponds to
the upper material and m = 2 — to the lower one).

When obtaining relations (9) and (10), the continuity of stresses, electric displace-
ments and electric potential along the whole material interface were taken into
account. Due to this fact the fourth row and column were excluded from the matrix
G and also the case j = 4 was eliminated from Egs. (9), (10).

Due to (9) the conditions at infinity for the function ®;(z) can be written in the
form

Oj@|imoo =U+y) (- mjt¥+0% +mjsH>). 1D
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3 Analytic Solution of the Problem
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Due to relations (9) and (10) the interface conditions (6), (7) can be satisfied by the

following relations:

O (x1) + 11 O (x1) = Oforx; € (c, a),

@;(xl) + O35 (x) =0forx; € (¢, a),
and

Im[O] (x1) + 1 O] (x1)] = Oforx; € (a, b),

Im[OF (x) — O (x)] = 0forx; € (a,b),
In addition, for implementation of the relations
(uz) =0, (W3) =0forx; € (a,b),
with the use of (10), we are able to require
G);“(xl) — O5 (x1) = 0forx, € (a, b).

The last equation provides the analyticity of ©4(z) in (a, b).
Equations (14) and (15) lead to the following single relation

Im[©7 (x))] = Oforx; € (a, b).

(12)

13)

(14)

15)

(16)

a7)

Thus, we arrive at the following combined Dirichlet-Riemann boundary value

problem for the function ©, (z) analytic outside (c, b)

G)T(xl) + 1 07 (x1) =0forx; € (c, a),

Im[®7 (x1)] = Oforx; € (a, b)

and to the Hilbert problem for the function ®(z) analytic outside (c, a)

@;(xl) + O35 (x) =0forx; € (¢, a).

The conditions at infinity are

O1(2) 100 = (L4 1) Himy ™ + 0™ + msH®),

(18)

19)

(20)

2y
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O5(D)]:00 = (L + y5) Hims;T° + 0 + mss H®) = 0.5(6™ + mss H™).
(22)

In the last equation we take into account that according to the numerical analysis
ys = 1 and ms; = 0.
The conditions at infinity can be expressed in the form

®j(2)|z~>oo = 6j - ifj’ (23)

where 6; = %(0"0 +misH®), Tj=-mjyt*/rj,rij=0+vy;),j=15.
J
An exact solution of the combined Dirichlet-Riemann boundary value problem
(18), (19) obtained by using the paper [17] can be written as

01(z) = P(2)X1(2) + Q(2) X2(2), (24)
where

P(z) =Ciz+ Ca, Q(2) = Uiz + Uz, X1(z) = ie"¥?//(z — ¢)(z — b),
X2(z) = €9/ J/(z =)z —a),l =b —c,

_ Jo—a—0) _ 1
p(z) =2 ln[ oG-+ (a—c)(z—b)]’ £= gy

and Cy, C,, Uy, U, are real coefficients which can be found from the conditions at
infinity (23) in the form

Cy=—%cosB—a;sinB,U; =&1cos B — T;sinf,
C,=—<2C) — UL U, = B1C) — 4Dy,

with

1—-41—-2A b—a
ﬂ—glnm,ﬁl—8\/(a—C)(b—C)and)\.— ] .

4 Analytical Expressions for the Components
at the Interface

By using the solution (24) together with the formulas (9), (10) one can get the interface
stresses for x| > b:

1 1 . 1
oy (x1,0) + migHY (x1,0) +i - myoly (x1,0) =
_[own | i P(m)] ri explig(x)] (252)

| Vxi—a Vx1—b Jxi—
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the interface stresses and strain jumps for x; € L:

o3y (x1,0) + mys Hyy (x1, 0) = —%[iﬁ’: cosh ¢y (x1) + Slnh%(xl)]
+ 72 cosh g (1) + 72 sinh gy (x1)
(25b)
/ ! P) ok
)= | ey o + h , (@25
<u1(xl )) . xl_C|: = cosh ¢y (x1) Jri—a sin ¢0(xl)] (25¢)

and the phonon and phason strain jumps for x; € L;:

() (1, 0)) + i {nia(us (1, 0)) + nis(Wx1, 0))} =
=2 Ja| a0 _; 0y Jewlivo) (25d)
- Vb—x; Ja—x| Jxi—c

where

0*(x1) =281n|: Vb - @) o) }

Vo=co@a—xD+J/a=—ob—x)/|
@—ob-x) _(n+ 1)2
Vo =0 —a) 4

By introducing phonon and phason stress intensity factors (SIFs)

©o(x1) = 2¢ tan~!

ki = lim 27 —a)o (x1,0), ky = lim /2wy — D)oy (x1,0),
P d

x1—a+0

26
ks = lim \/ZJT(xl —a) H3(3)(x1,0) (26)
xX1—a+
one gets from the Egs. (25a, 25b)
7wl
ki +misks =/ — w3, (27a)
2a
1 wl
fy = ——— —[w2+2e,/1—xwl], (27b)
niq 20

where w; = o;cos B+ m1Tsin B, w, = oysin B —m1Tcos B, ws = wia/1 — A —
26wy, 05 =0 +msH™®.

The solution of the Hilbert problem (20) can be obtained by using the results of
[40] as

Cos + Caz
[7) = 28
s J(z—c)(z—a) 28)
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and after defining the arbitrary coefficients Cy4, C14 from the conditions (23), we get

ad _CHta 1
5= (Z 2 ) G- oG-a @)

where 0, = 0% + mss H*.
Using the relations (9) for j = 5 and taking into account that ms; = 0, it follows
for z = x; +i - 0and for x; > a the interface stress formula

c+a 1
03(31)(x1,0)+m55H3(31)(x1,0) =o,(x) — )

2 xi—obr —a)

(30)

Further, using the definition (26) leads to

ki 4+ mssks = ojy/7(a — ¢)/2. 3D

In a similar way, from the Eqs. (10) with j = 5 one obtains for z = x; +i -0 and
for x; € L, the following jumps of the displacement derivatives:

ns3(uj(xi, 0)) + n55<W3(x1s 0))

=0y (x1 - m)

{F4 (x1) = Fy (x)} =

Vxi—c)(a—x1) C)(a x1)

(32)

The phonon stress 033)()51 , 0) and the phason stress Hg(;)(xl 0O)forz=x1+i-0
can be easily determined from the Egs. (25a) and (30) for x; > b and from the
Egs. (25b) and (30) for x; € L,. The SIFs for x; — a + 0 can be found from
the Eq. (27a), which together with the Eq. (31) and by utilizing the relationship
(a—c)=1(1— 1), leads to

l
ki = (mss —mis)™ | | Imsson —misop/al=5] (3

l
ks = —(mss — mlS)_lﬂ ;—a[wg —op/a(l — )»)]. (33b)

From the Eqgs. (25d) and (32) one can easily find the expressions for (ug(xl, O))
and (Wj(x;, 0)) for x; € L;. Particularly for x; — a — 0 these values have the
following expressions

1 l
21, 00) = 5 [nuey = mioiymn=nl. G4

[
(Wj(x1,0)) = N {n53w3 N )\)}, (34b)
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where An = Nn13Ns55 — N53N15.
Using the Eqgs. (27a) and (31) allows to obtain the following expressions for
(4 (x1, 0)) and (W5 (x1, 0)) at the limit x; — a — 0 via the IFs

1
(u’g(xl, 0)> = —m(@llkl + O15ks), (35a)
— X1
1
<W3/(x1, 0)) = _m((%lkl + Ossks), (35b)
— X

where

O = (nuavoa/yi —ni)/Ap, O15 = (misnss/o/yr — mssnis) /Ay,
(35¢)
Os1 = (n13 — ns3/a/y1)/Ap, Oss = (mssnz — misnaJ/a/y) /A,

Moreover, for x; — b — 0 Eq. (25¢) leads to

() (x1,0)) = — Onka, (36)

1
V2m(b = x1)

with @y = — 2L,
Further, we introduce the energy release rates (ERRs) related to the points a and

b:

N [03(;)()51, 0)(u3(x1 — AL 0))
G{ = lim — dxy, (37a)
A0 2Al +HY (x1, 0)(Ws(x; — Al 0))]

a

b+Al
c_ 1 ) _
G; = Al}glo TAl / 03, (x1, 0){u3(x1 — AL, 0))dx;. (37b)
b

Substituting the expressions 03(;) (x1, 0), H3(3l) (x1,0), 03(11 ) (x1, 0) from the defining
Eq. (26) and by adopting the Egs. (35a, 35b, 35¢), (36) after the evaluation of the
integrals (37a), (37b) one gets the following expressions:

GS = [011k} + Ossk? + (©15 + Os))kiks]/4, (38a)
G5 = Opk; /4. (38b)
The total ERR can be found as

G = G$ + G5 = [0k} + Onk3 + Osski + (015 + Os) )k ks]/4.
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5 Contact Zone Model and Numerical Illustration

The solution of an interface crack problem, as obtained in the previous chapter, is
mathematically valid for any position of the point a. But for an arbitrary value of a
it is not physically correct because for its physical validity the following inequalities

o33 (x1,0) < Oforx; € Ly, (u3(x;,0)) > Oforx; € L. (39)

shall be satisfied. In this case, the contact zone model in Comninou’s [16] sense takes
place.

A corresponding analysis shows that these inequalities hold true if A is taken from
the segment [A;, A,] where A; is the maximum root from the interval (0,1) of the
equation y/a — x;(u}(x1, 0)) = 0 and A, is the similar root of the equation k; = 0.
By using the formulas (33a) and (34a) the equations for the determination of A; and
Ay can be written in the following shape, respectively

nis 2¢e
w] — — 0, = ——uw 40a
1 «/)/1'155 1= = 2 (40a)
mys , 2¢e
w) — Ja—0,; = w,. 40b
1 mss d T—x 2 ( )

The confirmation of the fulfillment of inequalities (39) is presented in the Figs. 2
and 3, where the variation of (u3(x1, 0)) in the interval (b — b/5, a) and oé})(xl, 0)
in (a, b), respectively, are presented for c = —5 mm, » = 5 mm, 0> = 0.1
MPa, /0> = —30, H*® = 30000 Pa. For such a loading A; = 0.008755 and
Ay = 0.05785, graphs I in the Figs. 2 and 3 correspond to A = Xy, lines Il — to
A = (A1 + A2)/2 and line /1] — to . = A,. It can be seen from these figures that for
all considered values of A the displacement jump (u3(x;, 0)) remains positive and
the stress 03(;) (x1, 0) in the contact zone holds negative, i.e. the inequalities (39) are
satisfied and yield pressure along the contact line.

It is clear that for a certain loading the contact zone of unique length should
take place. Definitely, this zone will correspond to the smooth crack closure, which
occurs for A = Ay. The results relating to this case are depicted in the Figs. 4, 5 and 6.
Particularly in Figs. 4 and 5 the variations of (u3(x;, 0)) and (W3(x;, 0)), respectively,
in the interval (c, a) for the same ¢, b, o, ©*° as in Figs. 2, 3 but for different
H® are shown. Curves I correspond to H> = 38991.2 Pa (A; = A, = 0.05823),
graphs II is drawn for H*® = 37041.6 Pa (A; = 0.03923, A, = 0.05815) and line
III correspond to H* = 31192.9 Pa (A; = 0.01135, X, = 0.05790).

It follows from the Figs. 4 and 5 that the phonon displacement jumps satisfy the
second inequality (39) and always remains positive whilst (W3(x;, 0)) change sign
at the crack tip for some values of H°°. However, such variation does not mean crack
faces interpenetration because phason displacement W3(x;, 0) correspond to out of
plane direction and is physically admissible. It is worth noting also that the lines /
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(u3(x1,0)>-103, mm

0 + t t + {
3 34 3.8 4.2 4.6 x,mm 5
Fig. 2 The variation of (u3(x;, 0)) in the interval (b—b/5, a) forc*° = 0.1 MPa, t*° /o> = —30,
H*> = 30000 Pa
44 45 4.7 48 49 x. mm 5
0 t t + t {
1+
yig
1l
24
3+ 1
o3} (x,,0), MPa
4 1

Fig. 3 The variation of Uég)(xl , 0) in the interval (a, b) for the same values of 0°, T and H*®

as in Fig. 2

correspond to the case of o, = 0, which gives A; = A,. In this case, according to
(32), (W3(x1, 0)) is proportional to (u3(x1, 0)).

In Fig. 6 the variation of Hg)(xl, 0) in the contact area (a, b) for the same
¢, b, 0, v as in Figs. 4 and 5 and different H* are shown. The lines I, 1I
and III in this Figure are also drawn for the same H as in Figs. 4 and 5.

It follows from the Fig. 6 that the obtained phason stress remains negative in the
whole contact zone and only in the left end of this zone (point a in Fig. 1) it is equal
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(u3(x,,0))-10°, mm

i

-5

-3

P

1 3

X, mm 5

155

Fig. 4 The variation of the phonon crack opening (u3(x1, 0)) in the interval (c, a) for the same
crack length and loading as in Fig. 2 and different values of H*°

i

(W;(x1,0)>, mm

-5

Fig. 5 The variation of the phason crack faces jump (W3(xy, 0)) in the interval (c, a) for the same

parameters as in Fig. 4

to zero for o; = 0 (line I). It is worth also to be mentioned that for o, = 0, according
to (30), one gets A = A, and H3(31)(x1, 0) in this case is proportional to 03(31)(x1, 0).
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44 4.5 4.6 4.7 4.8 49 x,,mm 5
0 E

1

)i

HY(x,,0), MPa

24

Fig. 6 The variation of the phason stress H;;) (x1,0) in the contact area (a, b) for the same
parameters as in Fig. 4

6 Conclusions

A plane problem for an interface crack between two piezoelectric quasicrystalline
half spaces under remote loading is considered. The stresses and electrical displace-
ments as well as the derivatives of the displacement and electrical potential jumps
are presented via a sectionally holomorphic vector function. This vector-function is
analytically continued across the mechanically and electrically bonded parts of the
material interface.

Further on, introducing an artificial frictionless contact zone at the right crack
tip and by assuming the electrically permeable crack faces assumption the problem
is reduced to a combined Dirichlet-Riemann boundary value problem. An exact
analytical solution of this problem is derived. On the base of this solution the phonon
and phason stresses as well as derivatives of the phonon and phason displacement
jumps along the correspondent parts of the material interface are expressed in a clear
analytical form. The stress intensity factors and the energy release rates at the singular
points are found.

The contact zone model (in Comninou’s sense) is derived as a particular case of
the obtained solution. Transcendental equations are found for the determination of
the real contact zone length. It is shown that for a remote tensile stress the real contact
zone length is extremely small, but for an essential shear field it becomes longer and
even comparable with the crack length.
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