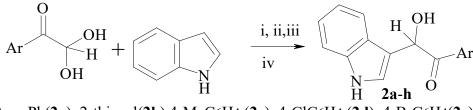
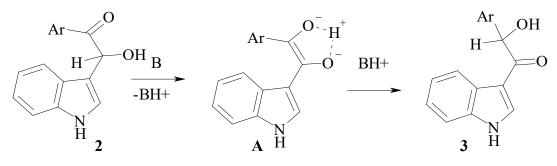

NMR AND MS SPECTRA OF ISOMERIC α- AND β-ARYL(INDOL-3-YL)BENZOINS

Shtamburg V.G.¹, Shtamburg V.V.¹, Anishchenko A.A.², <u>Kravchenko S.V.³</u>, Mazepa A.V.⁴

¹Ukrainian State University of Chemical Technology, ²O. Gonchar Dnipro National University, ³Dnipro State Agrarian and Economic University, sytailor@ukr.net,


⁴A.B. Bogatsky Institute of Physical Chemistry of NAS of Ukraine

Unsymmetrical benzoins and aryl(heteryl)benzoins exist in two isomeric forms, α -benzoins and β -benzoins for example aryl(furyl)benzoins **1a** and **1b** (Scheme 1, Ar = 4-ClC₆H₄), possess different stability.


The development of efficient and general methodology for the synthesis of α -functionalized α -(indol-3-yl) ketones is highly desirable now. These compounds become relevant precursors for the preparation of biologically active molecules.

We had synthesized known α -benzoins **2a** and **2b** with moderate yields by reaction of indole with proper arylglyoxals in PhH at r.t. (ii) or in AcOH at rt (iv). α -Aryl(indolyl)benzoin **2c** has been synthesized in boiling PhH according to Zhungietu (i). α -Aryl(indolyl)benzoins **2d**, **e** had been synthesized as by known method (i), as in AcOH at r.t. during 1 h (iv). α -(4-Fluorophenyl)(indolyl)benzoin **2f** was obtained by 4-fluorophenylglyoxal itnteraction with indole in PhH at r.t. (ii). α -(4-Nitrophenyl)(indolyl)benzoin **2g** was obtained by interaction of 4-nitrophenylglyoxal hydrate with indole in acetic acid at 19°C during no more than 1 h. α -(4-Methoxyhenyl)(indolyl)benzoin **2h** was synthesized with moderate yield by 4-methoxyphenylglyoxal hydrate interaction with indole in boiling PhMe.

Ar = Ph(2a), 2-thienyl(2b),4-MeC6H4 (2c), 4-ClC6H4 (2d), 4-BrC6H4(2e), 4-FC6H4(2f), 4-O2NC6H4(2g), 4-MeOC6H4 (2h)

We have found that some α -benzoins 2 readily isomerise into β -benzoins 3 in presence of bases (Et₃N (i,3a,3b,3d,3e), EtONa in EtOH (ii,3d,3e)):

 $(Ar = Ph (a), 2-thienyl (b), 4-ClC_6H_4(d), 4-Br-C_6H_4 (e)).$

Structure of isomeric α -aryl(indolyl)benzoins **2** and β -aryl(indolyl)benzoins **3** was confirmed by data of ¹H and ¹³C NMR spectra and mass spectra. In ¹H NMR spectra of compounds **3** the chemical shifts of C(2)H indolyl proton and NH proton lie in more low field then chemical shifts of proper protons of α -benzoins **2**. Probably, this phenomenon is caused by conjugation of indol-3-yl moiety with carbonyl group in β -benzoins **3** (Table 1).

Table 1. The characteristic ¹H NMR chemical shifts (ppm) of α -aryl(indolyl)benzoins **2** and β -aryl(indolyl)benzoins **3** in (CD₃)₂SO

α-benzoins			ß-benzoins		
Ar	C(2) _{ind} H	NH	Ar	$C(2)_{ind}H$	NH
Ph (2a)	7.355	11.075	Ph (3a)	8.544	11.984
2-C ₄ H ₃ S (2b)	7.411	11.085	$2-C_4H_3S(3b)$	8.563	12.042
$4-ClC_{6}H_{4}(2d)$	7.334	11.077	$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{3d}\right)$	8.58	12.04
$4-BrC_{6}H_{4}(2e)$	7.3285	11.073	$4-BrC_{6}H_{4}\left(\mathbf{3e}\right)$	8.564	12.025

In ¹³C MR spectra of α -aryl(indolyl)benzoins 2 and β -aryl(indolyl)benzoins 3 the characteristic carbon shifts are shifts of CHOH carbon and C=O carbon atoms

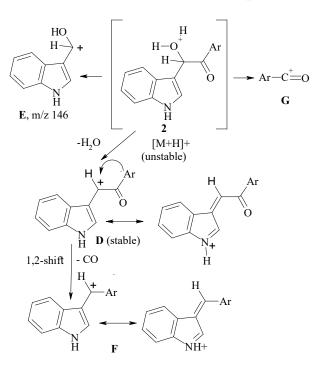
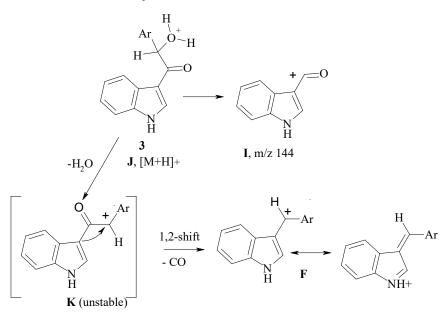

(Table 2). In compounds **3** shift of C=O carbon lies in some upper field than of C=O carbon of α -benzoins **2** due to more conjugation of C=O group with 3-indolyl moiety. Shift of CHOH carbon for β -aryl(indolyl)benzoins **3** is observed in some lower field than that of α -aryl(indolyl)benzoins **2**.

Table 2. The characteristic ¹³C NMR chemical shifts (ppm) of α -aryl(indolyl)benzoins **2** and β -aryl(indolyl)benzoins **3** in (CD₃)₂SO


α-benzoins			ß-benzoins		
Ar	CHOH	C=O	Ar	СНОН	C=O
Ph (2a)	69.5	199.0	Ph (3a)	76.2	194.3
2-C ₄ H ₃ S (2b)	70.8	192.3	2-C ₄ H ₃ S (3b)	72.4	193.1
$4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\left(\mathbf{2d}\right)$	69.7	197.8	$4\text{-}ClC_6H_4 (\mathbf{3d})$	75.5	194.1
$4-BrC_{6}H_{4}(2e)$	69.7	198.2	$4\text{-BrC}_{6}\text{H}_{4}\left(\mathbf{3e}\right)$	75.5	194.0
$4-O_2NC_6H_4(2g)$	70.3	198.2			

MS spectra of α - and β -aryl(indol-3-yl)benzoins also have some substantial distinctions.

Protonation of aryl(3-indolyl)benzoins molecules in FAB-MS conditions causes substantial difference of their FAB-MS spectra relatively to their EI-MS spectra. In FAB-MS spectra of α -aryl(indolyl)benzoins **2** peaks of [M+H]⁺ ions are absent, but KI addition to the samples yields peaks of [M+K]⁺ ions, whereas in FAB-MS spectra of β-aryl(indolyl)benzoins **3** [M+H]⁺ peaks of cations **J** are observed.

In MS spectra (FAB regime) of α -aryl(indolyl)benzoins **2** peaks of stable indolyl ions **D** [M+H-H₂O]⁺ and "benzylic" ion **E** with m/z 146 are dominated. In this case of α -aryl(indolyl)benzoins **2** the cations [M+H-H₂O-CO]⁺ **F** are observed, presumably obtaining from cations **D** by synchronous 1,2-shieft of aryl moiety to caution center and CO elimination. Acyl cations **G** are observed, too.

And vice versa, in MS spectra of β -aryl(indolyl)benzoins **3** peaks of ions $[M+H]^+$ **J**, $[M+H-H_2O-CO]^+$ **F** and acyl cation **I** with m/z 144 are dominated (Scheme 5). In this case aryl(indolyl)cautions $[M+H-H_2O-CO]^+$ **F** are observed too, presumably obtaining from cations **J** by H₂O elimination and the yielding unstable cations **K**. Further cautions **K** by synchronous 1,2-shieft of indolyl moiety to cation center and CO elimination convert into stable cations **F**. Peaks ions $[M+H-H_2O]^+$ **K** have low intensity. As shown, the water molecule elimination from protonated molecules benzoins **2** and **3** yields to forming of ions, having cation center in α -position to the indolyl moiety in the case of β -aryl(indolyl)benzoins **2** and in α -position to the aryl moiety in the case of β -aryl(indolyl)benzoins **3**. Seemingly, the indolyl moiety much effectively stabilized the positive charge than the aryl moiety. This phenomenon causes the high stability of ions **D** and low stability of ions **K**. Probably, the first causes the absence of $[M+H]^+$ ions in FAB-MS spectra of α -aryl(indolyl)benzoins **2**.