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An energy failure criterion for thermoviscoelastic structural members subject to abrasive wear and

dissipative heating is proposed. The criterion is used to develop an algorithm to calculate the durability

of such members under long-term cyclic loading. A simple formula of the number of cycles to failure is

obtained. Experimental results on destruction of a rubber liner are given. Good agreement between the

theoretical and experimental results is observed.
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Introduction. Rubber lining (rubbering) for various structural elements is widely used in metallurgy, mechanical

engineering, processing, mining, beneficiation, chemistry, etc. It prevents the metal elements of equipment from failure, extends

their service life by reducing wear, protects against noise, corrosion, shock, and high temperature, and significantly reduces the

load on these elements. Cyclic stressing is one of the principal types of the lining loading. Rubber lining has viscoelastic

properties and is heated during cyclic loading due to the hysteresis losses. Therefore, calculating the durability of a rubber lining

under loads, taking into account the indicated material behavior, is a crucial problem in solid mechanics.

This article proposes an energy failure criterion for viscoelastic structural elements, including a rubber lining, under

long-term cyclic loading. This criterion was used to develop an algorithm for calculating the durability of such elements under

long-term cyclic loading. A simple formula is obtained to determine the number of cycles to failure. The experimental results on

destruction of a rubber lining are presented, indicating a satisfactory agreement between the theoretical and experimental data.

1. Generalized Algorithm. The structural-synergetic model of lining failure can be represented as follows: the

destruction of the lining on the surface occurs in twoways: (i) abrasive wear, i.e., removal of rubber aggregates by harder counter

bodies and (ii) micro- and macro fatigue failure of rubber. The combination of these two mechanisms leads to abrasion-fatigue

failure of rubber. The damage rate is generally determined by the fatigue damage of the rubber.

The lining durability algorithm is based on an integrated approach to lining design, combining analytical calculations

and experimental data on fatigue, thermo-mechanical, rheological characteristics of rubber, type of wear and abrasion of the

rubber surface and its failure model. It includes the solution of the following problems:

– calculation of the lining stress–strain state, taking into account the viscoelastic effects in rubber;

– solving the heat-transfer equation with an internal heat source to determine the temperature of dissipative heating in a

rubber body;

– use of the criterion equations relating the failure parameters (abrasive-fatigue wear and deterioration of the material

with time) and the time to failure according to the criteria adopted in engineering.

Let us use this algorithm the design a single lining plate.

The stress–strain state and the dissipative heating temperature of viscoelastic structural elements are calculated in [1, 2,

6–8].
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Double-Criteria Durability Equation of a Rubber Lining (RL). For open thermodynamic systems that exchange an

energy with the environment, the dissipation energy dU
d
during dt can be resolved into components [3]:

dU dU dU
d T f
� � ,

where dU
T
is the thermal energy flux into the environment (Fig. 1); dU

f
is the energy of the irreversible processes within the

system, i.e., destruction of rubber ; for all real processes the work of destruction is given by

dU
f
� 0.

For abrasive-fatigue mechanism of failure of RL, the total failure energy �U
f
is expressed as

� � �U U U
f y w
� � ,

where �U
y
is the energy of destruction of rubber bulk; �U

w
is the energy of destruction of the surface layer of rubber due to

abrasive wear.

We will consider the deformable lining plate as a thermodynamic system. It is known that the state of any

thermodynamic system is most fully characterized by its internal energy. Therefore, we suppose that there is a one-to-one

correspondence between the degree of damage to the system and its internal energy. Based on this assumption, we will derive the

criterion failure equation.

Let us write the first law of thermodynamics for the case where the mechanical forces and some non-mechanical forces

such as radiation, act on the sample:

�

� �

�U
ij ij

� � �� � � 	 ,

where U is the internal energy of the system; � is the non-mechanical energy; 	 is the abrasive wear energy (hereafter, the time

derivative is marked by a overdot).

These forces increase the internal energy of the system. However, every system tends to pass into the state with minimal

energy. Therefore, increased internal energy is consumed within the system. According to the first law of thermodynamics, the

work done inside the system is aimed at changing the internal structure of the system and heat generation, i.e.,

� � 	 �

ij ij p
U q�

�

�

�

�� � � � ,

whereU
f
is the part of the internal energy that is used to change the structure of the system, i.e., to cause destruction; q is the part

of the internal energy dissipated as heat.

After time t
*
the energy balance will be as follows:

�U q dt
f ij ij

t

*

*

( � �

�

� )� 
 � �

�
� � 	 �

0

. (1)

Knowing the external forces acting on the system and time t
*
, from equation (1), we can determine the value of �U

f

*
,

and, alternatively, knowing �U
f

*
and external forces, it is possible to find the time to failure t. Thus, Eq. (1) is a long-term

strength criterion and allows us to determine the time to failure of a characteristic volume of the body under the known

deformation conditions and for the experimentally found constant �U
f

*
.

The equation for local durability of the rubber plate (N
*
is the number of cycles to failure) has the form:

496

Fig. 1

dU
d

dU
f

dU
T



N

U

E

f x y z
l m f

T

*

*

*
. | | ( )

, ( , , )�




� 


� � �

�

05 1
2

, (2)

where 

m
is the coefficient of asymmetry of themill charge; | |

*
E is the absolute value of the complex elasticity modulus;�

l
is the

coefficient that defines the rubber lining profile; � is the relative strain of the lining plates;�
T
is the coefficient that shows how

much of the energy dissipated in the rubber is spent for heat generation; the function f x y z( , , ) defines the stress and strain

distribution.

Lining plates under the loading are characterized by a stationary dissipative self-heating temperature field. Therefore, in

the first approximation, the parameter �
T

can be taken independent of the loading conditions and the temperature of the

environment.

Under these assumptions, the criterion equation (2) becomes simpler:

t N

U

E

l m f

f

* *

*

*
. | |

� �

� 


� ��

�

05
2

, (3)

where� �

f T
� 
1 is a coefficient that defines the part of the energy used directly for destruction of the rubber.

Taking into account

�

f

f

d

U

U

�

�

�

*

*

gives

N
U

E

l m d*

*

*
. | |

�

� 


� �

�

05
2

, (4)

where �U
d

*
is the critical (allowable) density of the energy dissipated in a lining plate under the loading.

Note that the time to local failure of t
*
the lining plate is identified with the destruction of the central region of the

rubber bukl.

For 541933-1 rubber, the allowable fatigue failure energy density found in direct experimentals is �U
d

*
.� �128 10

10

J/m
3
.

2. Phenomenological Model of Abrasive Wear for RL. When the mill charge and the RL interact, sharp and solid

counter bodies (balls and particles of the processed material) are pressed into the surface layer of rubber at a certain angle and

remain there for some time. The nature of the interaction of the abrasive particles with the surface layer of the rubber lining is

shown in Fig. 2, where N is the external force; �
y
is the normal stress; �

x
is the shear stress; F is the resultant force.
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In front of the sharp protrusion of the counterbody, the rubber is in a compressed state, and behind it experiences large

tensile strains, which leads to tearing of the rubber and the formation of strips in the direction of sliding. It is the presence of

longitudinal stripes on the abrasion surface that is a manifestation of abrasive wear. At the same time, large contact stresses lead

to the destruction of local volumes of rubber, to cuts (tear) and to mass transfer of rubber particles, i.e., to the separation of

particles and their removal from the drum by the coolant. A complex stress state arises in a local volume of rubber, which, in the

simplest case, can be reduced to the normal, �
y
, and tangential, �

x
, stresses (see Fig. 2), according to the Hertz–Dinnik model.

The abrasive wear intensity is determined by the load, hardness and sharpness of the counterbody protrusions, the angle of attack,

and the mechanical characteristics of the rubber. Thus, the mechanism of abrasive wear is quite complicated; account must also

be taken of the nonlinearity and stochastic behavior of this process and the fact that the rubber in the surface layer has a higher

degree of damage than in the volume [3].

Thus, the abrasive wear of rubber can be represented as mechanical detachment of certain particles (aggregates) of

material, and the wear resistance in this case, of course, is due to the strength properties of rubber. Wear resistance also depends

on the temperature and, generally, follows the concept of temperature–time superposition, similar to rubber strength. This fact is

important because it indicates the common viscoelastic nature of the destruction of rubbers during mechanical breaks and

abrasion, which allows us to use the same physical models, algorithms, and failure criteria to describe the process.

Determination of the Failure Energy during Abrasive Wear of Rubbers. As already mentioned in [4], the failure of

rubber lining of the drum mills follows the abrasive-fatigue mechanism. Consider the abrasive component of this complex

multi-parameter process. It is known that abrasive wear is based on the following components: wear caused by the breaking of

internal cohesive bonds of the material; adhesion due to the molecular forces; deformation caused mainly by the dissipative

forces.

The modern experimental capabilities make it possible to isolate, mainly, the adhesive component of wear, which is

caused by the breaking of “molecular aggregates” (the term used by Shallamakh, more suitable for the process of macrocracking

[5], Grosh [6], and others). The term “aggregate” is used below for abrasive wear of a rubber lining.

We will make the following important assumptions that give a general idea of the mechanism of rubber destruction due

to abrasive wear and stay within the accepted phenomenological model:

– the matrix and the counterbody (i.e., the rubber lining and the charge) undergo uniform relative slip with speedV;

– the temperature T in the contact zone does not exceed the permissible temperature [ ]T for the type of rubber under

consideration: T T� [ ];

– the process under study is compatible with the principle of equivalence of speed and temperature, i.e., A V T( , ) that

depends on the speed and temperature complies with the principle of temperature–time superposition (the so-called

Williams–Landel–Ferry (WLF) equation); this principle is described in [1, 2] for the deformation characteristics of rubber, and

in [4] for the wear characteristics;

– a rubber aggregate is separated from the matrix, i.e., the bond is broken, when the energy accumulated by the

aggregate during wear reaches a certain critical valueU
0
; in studying single acts of wear (scratching with a needle) of filled

rubbers, Shallamah, Grosh and, later, Hatfield showed (including experimentally) that the energy absorbed by the “molecular

aggregate” during wear is of the order of magnitude that the energy barrier between free and bound aggregate states; such a

concept of abrasive wear destruction is justified by these authors;

– the relaxation function of aggregates is known and determined by the properties of the material for the rubber under

study. Moreover, knowing the relaxation function and the law of displacement of two materials in contact (uniform relative

sliding at a given speed) and using the Boltzmann integral, we can obtain the bonding force equation for an elementary aggregate

to calculate the friction (wear) force as the average of the bonding forces.

Using the known dynamic limit of one bond (its value can be found experimentally, based on the value of friction at

speeds close to the speed at zero slip), the obtained wear force, and the energy failure criterion, we can determine the critical

failure energy of the rubber during abrasive wear.

Energy Failure Criteria for Rubber Subject to Abrasive Wear.When a rubber aggregate separates from the matrix, it

is assumed that the rubber relaxation function r t( ) is known (i.e., we know the mechanical parameters of rubber) and there is a

uniform relative motion between the charge and the lining, with a low constant speedV in most cases. Using the Boltzmann

integral, we can get the equation of the bonding force for an elementary aggregate of rubber and then determine the friction force

(wear) as the average of the bonding force.
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Suppose n is total number of aggregates subject to the bonding forces near the contact surface; n
0
and n

1
are the number

of aggregates, respectively, in a bound and free (i.e., after separation) state; t
0
and t

1
are the times during which the aggregate is

in a bound and free states, respectively; these quantities are related by the statistical relations

n

t

n

t

n

t t

0

0

1

1 0 1

� �

�

. (5)

The assumption that the time during which the aggregate is in a free state is proportional to the relaxation time � of the

aggregate,

t a
1
� �,

where a is a constant, will be true if we assume that the time required for the aggregate to reach a known dynamic level is

proportional to �, and the displacement will be proportional toV.

Using the above assumptions and the Boltzmann integral, we determine the bonding force f t( ) as

f t V r t t dt

t

( ) ( )� 
 � �

�

0

. (6)

If we know the dynamic limit f
0
of one rubber aggregate, then it can be determined experimentally, from the friction at

speeds close to the speed at zero slip (for example, when using lubricant) using the expression

f F n
0 0

2 0� ( ) / , (7)

where F ( )0 is the zero slip friction force.

Assuming that the bond between the aggregates of rubber disappears when the force reaches the value f
0
, we can write

Eq. (6) as follows:

f t f( )
0 0

� . (8)

The total friction force, as the average of the bonding forces of the aggregates in contact with the counterbody, is:

F
n

t
f t dt

t

�

�

0

0 0

0

( ) . (9)

Suppose that the rubber is characterized by the relaxation function

r t E be
t

( ) ( )
/

� �




0
1

�

, (10)

where E
0
is the elasticity modulus of rubber; � is the relaxation time; b is some constant; t is the current time.

The elementary bonding force of each aggregate is determined in accordance with (6) for a given form of function (5)

from the expression

f t vtE vbE vbE e
t

( )
/

� � 





0 0 0
� �

�

. (11)

Let

L v� �� and � �� t / , (12)

where L is the relaxation length of molecule aggregate; � is the relaxation time.

Then formulas (11) can be written as

� �
f t LE b e( ) ( )� � 





0
1�

�

. (13)
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The quantities � and L are of the same order of magnitude with, respectively, the mean free time of rubber aggregates

and their mean free path [4, 5].

Using notation (12), from conditions (8)

� �
f f t t E L b e
0 0 0 0

1 0
� 
 � � 





( ) ( )�

�

, (14)

and the equation

� �
L

f

E
b e� � 








0

0

0

1

1 0
�

�

( ) , (15)

we can determine t
0
(as well as a

0
).

The friction force F (total force) is determined by averaging the bonding forces of rubber aggregates according to the

formula

F
n

t
f t dt

t

�

�

0

0 0

0

( ) . (16)

After integration, the general wear equation (16) takes the form

F
n E L

b e� � � 


�

�

�

�

�

�

�

�


0 0

0

0

2

0

2

10

�

�

�

�

( ) (17)

or taking into account (5),

F
nE L

a
b e�

�

� � 


�

�

�

�

�

�

�

�


0

0

0

2

0

2

10

�

�

�

�

( ) . (18)

When studying the change in the adhesive component of friction as a function of the sliding speedF(L), it is sufficient to

eliminate a
0
by simultaneously solving Eqs. (15) and (18) and to analyze the obtained results.

In view of the foregoing, we may state that the energy failure criterion for rubber, which postulates that the breaking of

the bond between the aggregate and the matrix occurs when the energy accumulated by the aggregate during the wear of rubber

reaches a certain critical valueU
0
, allows us to determine the value ofU

0
according to the equation

U V f t dt

t

0

0

0

�

�
( ) (19)

or, taking into account (9) and (12),

U Vt F n
0 0 0
� / . (20)

According to (5),

n

t

n

t t

n

a

n

a

0

0 0 1 0 0

�

�

�

�

�

�� � � � �( )

formula (20) is transformed to

U
L a

n
F

0

0
�

�( )�

(21)

or in terms of the force of friction:
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F
nU

L a
�

�

0

0
( )�

. (22)

For rubber with relaxation function in the form (10), the expression for the parameter L can be derived using formulas

(21) or (22) and the evaluated integral (18):

L
U E

b e

�

� � 





0 0

0

2

0

2

10

/

( )

�

�

�

. (23)

The change in the friction force F, as a function of the speed F(L) is found by solving the system of equations

� �

L
U E

b e

F
nU

L a

�

� � 


�

�

�

�

 

 

 

!

 

 

 




0 0

0

2

0

0

0

2

10

/

,

( )

.

�

�

�

�

(24)

Thus, for the filled rubber used as protective lining for a drum of the ore-grinding mills, it is advisable to determine the

abrasive fatigue failure energy by formula (20) with known relaxation curve and experimentally foundwear parameters of model

samples.

Experimental Studies. Such studies were performed in accordance with GOST 426-77 (Method for determining the

resistance to abrasion in sliding). We used a MI-2 test bench and standard 20"20"8 mm samples of 541933-1 lining rubber,

attached to a special holder frame and abraded with a grit cloth (according to GOST 344-74). For statistical data processing, at

least nine tests were conducted. The results thus obtained were as follows: friction force F � 16 N, abrasion time t � 150 sec,

abrasion speedV � 0.285 m/sec.

The number of wear particles n � �60 10
3
(average over nine tests; the average mass of particles is 0.5 g; at the average

particle diameter d � 0.4 mm the number of particles in one cubic meter is n
*
� �22 10

9
m
–3
).

In this case, the failure energy for one rubber fragment (i.e., the energy of its separation from the matrix) according to

Eq. (20) is

U
FVt

n
0

3

3
16 0285 150

60 10

114 10� �

" "

"

� "



.

.

J.

The density of abrasive wear failure energy, i.e., failure energy per unit volume of the material, is

�U U n
w
� � " " " � "




0

3 9 10
114 10 22 10 025 10

*
. J/m

3
.

The experimental studies show that even for the material from the same batch of rubber lining plates, the failure energy

density is within ( . . )022 028 10
10


 " J/m
3
, which is understandable, given the stochastic nature of wear and technology factors.

3. Example of Calculating the Durability of Rubber Lining of Drum Grinding Mill.

Prerequisites for the Calculation. In addition to the general theoretical models, the wear curves for rubber lining based

onmany-years experimental observations, are also the prerequisite for calculation of the local durability t
*
. Figure 3 shows such

a wear curve for a Plita–Volna rubber lining installed in a 3.2"34.5 CDB mill.

The point F corresponded to the local durability of the RL, i.e., t t
E

* *
.� 087 , where t

E

*
� 23100h is the operating time

determined from the failure criteria; the point A corresponded to wear such that the residual RL thickness is [ ]�h �40 mm, i.e.,

during normal operation; the point B corresponded to wear such that the residual thickness of the RL is [ ]�h �27 mm, i.e., when

themill operates in pre-emergencymode; after that, the RLwas dismantled. The time to failure of the RL for a particular mill was

t
E

*
� 23100h; for the type of mills under consideration, the time to failure of the RL was (22–24)�10

3
h.
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The physical and mechanical characteristics of the rubber were determined using the model samples and the methods

from [3].

The constants that characterize the design features of the RL were determined as follows:

the coefficient�
l
that characterizes the profile of the RL is found as the ratio of the durability of trapezoidal plates with

recesses; it was experimentally established that the durability of trapezoidal plates is 12 to 20%more than those of smooth plates;

therefore, the coefficient was taken equal to�
l
� 1.12–1.20;

the coefficient 

m
that characterizes the influence of load asymmetry along the mill length was adopted as the ratio of

the RL durability for the moderate wear zone to the intensive wear zone (in the moderate wear zone, the RL durability was 10 to

12% higher than that in the intensive wear zone); therefore, the coefficient was adopted as 

m

� 1.12. These coefficient were

obtained during more than 15 years of operation of the CDB mill with rubber lining.

Input Data for Calculation.

1. CDBmill 3.2"4.5; charge: balls with a diameter of 40mm; drum rotation speed#�19.8 rpm ( /# 60 �0.33 cycle/sec).

2. Plita–Volna rubber lining; trapezoidal plates with recesses, maximum plate height h
l
� 160 mm; experimental

average deformation of the plates �
d
� 6.4 mm (compressive strain � � 0.04);�

l
� 1.20, 


m
� 1.12.

3. Rubber 541933-1 with the following physical and mechanical characteristics: dynamic Young’s modulus

E
d
� �567 10

6
. Pa; energy dissipation factor� �0.59; factor�

Ò
�0.75; distribution function of the stress and deformation fields

according to the method from [5] f x y z( , , ) � 1.23.

4. Total experimental abrasive-fatigue wear failure energy of the RL is

� � �U U U
f y w

* * *
� � � (1.28 + 0.25) " 10

10
J/m

3
= 1.53 " 10

10
J/m

3
.

Given these data, the number of cycles to local failure of the rubber lining can be determined as follows:

� � � �

N

U

E f x y z

m l f

d Ò

*

*

. , ,

�





 �

� � �

�

05 1
2

�

" " "

" " " " " "

120 112 153 10

05 567 10 004 059 025 1

10

6 2

. . .

. . . . . .

.

23

0249 10
8

� " cycles

or

t
N

*

*
.

.

.� �

"

� "

#

0249 10

033

0754 10

8

8
sec = 20 960 h.

The experimentally found local durability of the RL is 20,300 h (see Fig. 3); the operational durability of RL in the

normal conditions is 23,100 h. As we can see, the agreement between the calculated and experimental data is quite satisfactory.

Such agreement is not accidental: all the physical andmechanical characteristics of rubbers were determined experimentally; the

parameters of the RL in a real mill were constantlymonitored, recording the experimental wear curve; the calculationwas carried

out for the zone of moderate wear.
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When using the above algorithm in the absence of reliable parameters (for example, when predicting the durability of

the RL from a new rubber grade or new designs of lining plates), the error will certainly be slightly larger.
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