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ASYMPTOTIC METHOD IN TWO-DIMENSIONAL PROBLEMS
OF ELECTROELASTICITY

Purpose. Generalization of the asymptotic method for solving two-dimensional problems of electroelasticity. Accounting for
electric charges arising from deformation on the surfaces of piezoelectric materials. Checking the possibility of taking into account
the magnetic field and the opposite effect when exposed to an electric field.

Methodology. The mathematical model of the piezoelectric material is described using the equilibrium equations, the electro-
elastic state, and the Cauchy relations. A small parameter is introduced as a ratio of the physical characteristics of the material.
Transformations of coordinates and desired functions depending on the specified parameter are proposed.

Findings. The introduction of these transformations allowed splitting the initial boundary-value problem into two components
with different properties. Each of them contains both mechanical and electrical components. The solution is sought as a superpo-
sition of solutions of both types. Each of the types of stress-strain states contains the main function and an auxiliary one. The ex-
pansion of the desired functions in rows by parameter € and the construction of asymptotic sequences lead to the fact that in each
approximation the main functions are sought from the Laplace or Poisson equations. Auxiliary ones are found by integration. The
analysis of the boundary conditions is given. It is shown that they can almost always be formulated for basic functions.

Originality. The method proposed earlier by the authors for reducing the boundary value problems of linear and nonlinear
elasticity theory to the sequential solution of potential theory problems is generalized for the case of modern piezoelectric materi-
als described by electroelasticity equations.

Practical value. With the help of the proposed approach, analytical solutions of practically important problems of electroelas-
ticity can be obtained; estimates of the stress-strain state of products from piezoelectric materials are carried out. The results can
be used as null approximations in numerical calculations.

Keywords: electroelasticity, interaction, analytical solution, piezoelectric, asymptotic method, two-dimensional problems, piezoelec-

tromagnetic elements

Introduction. Active materials, first of all piezoelectric and
piezo-electro-magnetic ones, are often used as functional
parts of different electronic devices including sensors, trans-
ducers and actuators. This is due to the fact that such materials
are able to change their shape under the action of an electric or
magnetic field. In many cases, the dimensions of the devices
mentioned are extremely small, but nevertheless they can be
exposed to very large mechanical, electric and magnetic fields.

Moreover, these devices are usually constructed of ele-
ments which can be manufactured of different materials
(piezoelectric or piezoelectromagnetic elements, electrodes,
and others).

In practice, the results of solving model problems taking
into account the use of active materials show that the stress-
strain state usually depends on the geometric characteristics,
electrical or magnetic load, as well as on the material proper-
ties [1].

Literature review. The use of piezoelectrics in modern
technology forces researchers to consider electro-electromag-
netic elasticity as a single science combining electrodynamics,
the theory of magnetism and continuum mechanics, which are
practically studied separately. This is due to the fact that dur-
ing the deformation of some materials, electric charges pro-
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portional to the deformation appear on their surfaces. But it
turns out that one cannot neglect the opposite effect, which is
manifested by the appearance of mechanical stresses under the
influence of an electric field.

This problem was considered by Parton V.V. in the work
“Electromagnetic resilience of piezoelectrically conductive
bodies”. His works outline the main provisions on the theme
under study.

The issue of using piezoelectrics in designing modern ma-
chinery is highly relevant. In this regard, quite a lot of authors
pay attention to solving various kinds of model problems in the
described theme.

In [2], a multilayer piezomagnetic/piezoelectric compos-
ite with periodic interphase cracks subjected to magnetic or
electric fields in a plane was studied.

In [3], an interphase crack in the case of an infinite piezo-
electric bi-material is considered. Initially it is believed that the
crack is filled with an electrically conductive fluid. The authors
take into account the contact of the crack faces, as well as the
electric field in the contact zone. Often when considering such
a problem (within the framework of an open model), a pecu-
liarity arises that leads to the case of physically unrealistic mu-
tual penetration of materials. The authors in their publication
proposed for consideration a contact model for a crack between
two isotropic materials, which eliminates this drawback.
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In [4], the authors investigated the effect of surface piezo-
electricity on out-of-plane (anti-plane) deformations of a hex-
agonal piezoelectric material weakened by a crack.

In the article [5], the authors investigate electroelastic fea-
tures at the apex of a rectilinearly polarized piezoelectric
wedge. The methods of the three-dimensional theory of
piezoelasticity are used.

An analytical solution of magnetothermoelectro-elastic
problems of a piezoelectric hollow cylinder placed in an axial
magnetic field is presented in [6]. The cylinder is subjected to
arbitrary thermal shock, mechanical stress and transient elec-
trical excitation.

In [7], the problem of an electric and stressed state in an
orthotropic electroelastic space with a circular crack with uni-
form force and electric loads was considered. The solution of
the problem is obtained by using the triple Fourier transform
and the Fourier transform of the Green function for an infinite
piezoelectric medium.

Unsolved aspects of the problem. The works mentioned
above demonstrate the widespread use of piezoelectrics and,
as a result, the attention of researchers to their behavior [8, 9].
Of interest are various approaches to solving problems that
take into account the complex properties of materials.

Since isotropic materials in electroelasticity are not of inter-
est, naturally, special attention should be paid to anisotropic ma-
terials and materials with strong anisotropic activity. In this case,
as a small parameter in the asymptotic analysis, it was proposed
to consider the ratio of the rigidity characteristics of the material.

To take into account possible relationships between the
components of the displacement vector and the rate of their
change along the coordinates, it is proposed to introduce af-
fine transformations depending on the specified parameter.
The form of these transformations shows that the solutions of
the corresponding systems of equations obtained for asymp-
totic integration have different properties. This is manifested
in the difference in the order of the components, as well as in
the variability of the solutions.

Each of their limiting systems of equations has a lower or-
der than the original system. These limiting systems, as well as
the corresponding asymptotic processes, are considered as
complementary. Solutions of boundary value problems are
sought as a superposition of the components corresponding to
these types of stress-strain state.

In this article, a new asymptotic method is proposed for
solving problems of electroelasticity.

Formulation of the problem. Let two mutually perpendicu-
lar planes of elastic symmetry pass through each point of a
uniform anisotropic plate. Assuming that these planes are per-
pendicular to the Cartesian coordinate axes x, y, respectively,
we obtain the following equilibrium equations, electrostatics,
electroelastic state, and the Cauchy relations
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Yx, Yy are the components of the induction vector and the
electric field strength; s; stands for deformation coefficients of
the material of the body, measured at a constant induction of

(t,,) are normal (tangential) stresses; D,, D, and

the electric field; g,‘;‘D is piezoelectric deformation and tension

modules, measured at constant induction voltages; By, is di-
electric susceptibility coefficients measured at constant volt-
ages; U, V are the components of the plate displacement vec-
tor. From the first equation of system (2) it follows that there
exists some scalar function ¢ = @(x, y), such that
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Results. The solution of a particular boundary value prob-
lem can be reduced to the integration of the system of equa-
tions
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under appropriate boundary conditions.
The components of the stress tensor and the intensity vec-
tor in this case are written as follows
G, =Bi(u +wnV,—a;9);
Gy = By(viuy + V), — ap,0,);
T=G(u, + V, + ay0,);
E, =-Baju, — Bya,V, + Bb,¢,; (6)
) =—Gayu, —GayV, +Gbyo, .

Here 6, = 86,; 0, = 80,5 1= 81,5 ¥, =8Y,; Y,=8Y,; B =
_EQ _ Ep
_1—v1v2° _1—v1v2
dices x, y in equations (5) and relations (6) denote the differen-
tiation by coordinates; E,, F, are modulus of elasticity along

the main directions x, y; G, is shear modulus; v;, v, are Pois-
son’s coefficients. In real orthotropic materials, the value

) ; G=G35; 6 is plate thickness. The in-

= % is always much less than one. The attitude g = % may
1 1

be different (¢ < 1 or ¢ > 1), but always remains more than ¢.

Therefore, the quantity & can be considered as a small param-

eter in the asymptotic integration of system (5). The value ¢ in

the future we will assume approximately equal to one. We in-

troduce the following transformations

1
g =aglx; M=y, u =\,
3 3
V= SEV(l)’ o= SE(P(I), (7)
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1 3
g =x; m,=Pely; u=e2U;

V=V®; ¢=gX®?. (8)

Transformations (7, 8) show that solutions of the system of
equations obtained from (5) after the introduction of transfor-
mations (7) (or (8)) change relatively slowly along the coordi-
nate x (or y) in comparison with similar solutions of the system
obtained after applying other transformations. In the stress
state of the first type (slowly varying along the coordinate x;
transformations (7)) the main role is played by the displace-
ment component u, the normal stress ¢;, the component of
the tangential stress t, depending on the displacement u. In
the stressed state of the second type (transformation (8)), the
displacement V, stress o,, and the component of the shear
stress T, depending on the displacement component V. The
total shear stress consists of the sum of both components; it is
the link between these two types of stress states that is realized
through it. Depending on the loading, one of them has the
character of a boundary layer. Thus, during mechanical load-
ing of piezomaterials, when the boundary conditions are spec-
ified in stresses, displacements or their combinations, the so-
lutions of the corresponding boundary problems will be repre-
sented as a superposition of solutions of these two types of
stress-strain state

u=uD+u®; V=VO Ly o= 4o,

When looking for functions, ™, V™ o™ (n =1, 2) in the
form of a rows in powers of a parameter ¢, it is necessary to
choose the corresponding asymptotic sequences. The form of
the asymptotic sequence is determined by the structure of
equations (5) and the order of the ¢ residual in the boundary
conditions that arise after solving the problem in the zero ap-
proximation (¢ — 0). To take into account all possible cases,
we will define these functions in the form of series by param-
eter '/ (it is clear from transformations (7, 8) that series by
lower degrees of the parameter cannot occur)

vl = igfﬁljn,j;

Jj=0

V(") :igf/z[/n,j; 9)

=0

(p(v) = i(p"*f, (n: 1,2).
9=0

The coefficients a, B are also represented in the form of
rows with respect to the parameter £'/2, and o,y = By = 1, and the
coefficients a, B; (= 1, 2, ...) are found from the same condi-
tions as for elastic materials [10], namely: in each of the ap-
proximations on the left side of the equations to determine the
basic functions U"/, >/ the Laplace operators of these func-
tions should remain, and in the first part there are no compo-
nents of the displacement vector or their derivatives (in the
elastic problem for determining the main functions in each of
the approximations, the right-hand sides zero). The auxiliary
functions V'"/, U/, o'/, >/ through the main are expressed
by simple integration. In particular, when ¢g = 1 the coefficients
o;=P; (=1, 2,...) are determined by the formula
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From this formula it follows that the coefficient o is ex-
panded in a series of powers ¢, but not €'/2. If m = 1 (in this
case, the Poisson ratios are assumed to be equal to zero), then
o it is expanded in a series in powers 2. We substitute the
transformations (7) into the system (5) and use the corre-
sponding expansions taking into account (10). After splitting
the resulting system by parameter ¢'/? we arrive at an infinite
system of equations for the functions U/, V17 o/ (j = 0,
1,...). In this case, we assume that oy, ~ gByy, by, ~ €2byy, apy ~
~ @y ~ €by. We give these equations for the first three ap-
proximations (=0, 1, 2).

U3
qV) +mUL =0;
-a, UL +eb, 040 =0; (11)
UL+ Ul -0
gV +mUL =0;
-a, lUi';]l +eb, 1@}{:1 =0;
gV +mUL =0;
—a, lUé;]z +¢eb, 1(91{121 =0.

Here and hereinafter, it is assumed that differentiation (in-
dices &, ) are made according to those coordinates, &,, n, (n =
=1, 2), whose indices coincide with the first superscripts of
functions. After substituting the transformations (8) into the
system (5) using the corresponding expansions and splitting in
the parameter €'/, we obtain an infinite system of equations
for the functions U>/, V*J, >/ (j=0, 1,...), which determine
the solutions of the second type. From system (11) it follows
that in the first two approximations (j = 0, 1) the main func-
tions U/ (V> for the second stressed state) are determined
from the Laplace equations (with ¢ = 1 or one of the variables
is obviously replaced), and the auxiliary functions are ex-
pressed by simple integration through the main ones.

In the third approximation (j = 2) and further, the stress
state of the first type of function U is found from the Poisson
equation with a known right-hand side, which contains only
the function ¢, which is found in the previous approximations.
A similar situation takes place in the stressed state of the sec-
ond type for the function V%, but starting from the fourth ap-
proximation (j = 3) and beyond. We use transformations (7, 8)
and expansions in expressions for displacements, stresses and
strengths (6) and present them in series

U=U"" 420 +eU +
V=V20 4 g2Y20 4 g22 4 (Y23 4 VIO 4
o) = Blgl/z[Ué‘o +&2 (UM +v,U20)+
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o, = B[ V2042 (V2 4 v Ul .. ];
T= G[Ué’o +V20 +g? (UT‘{1 +V2! )+8(UT‘{2 + V§2’2)...].

It was taken into account that Poisson’s coefficients v;, v,
are of order £/, a}, — of order £%b,, a;, — of order ¢b,,. From
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relations (11, 12) it can be seen that the stress-strain states of
the first and second types are connected only through the
boundary conditions. Since the main functions U>/, >/ are
determined from the Laplace (Poisson) equations, the effi-
ciency of the method depends on whether it is possible to form
the corresponding boundary value problems for finding these
functions.

Analysis of boundary conditions. et normal ¢, and tangen-
tial t stresses be known on the limiting line (for example, x =
= const, V%)

c1=f); 1=L0); 0=£0).

We assume that functions f,(y) can be represented by series

fn(y):gﬁ”zﬁ,,,(y), (n=1.).

Then on the bounding line

x=const; o ;=f1 ;5 v=hHp @=f

Using the results of the previous paragraph, we arrive at
integrating the equations of the stressed state of the first type
(7 = 0) under the following boundary conditions for the main
functions

-1
UL =(Be?) fips V20 =G fy-UL.

Similarly, it is not difficult to obtain boundary conditions
for functions U"°, V>0 in the case of a mixed problem. An
analysis of the boundary conditions shows that for all bound-
ary value problems, the boundary conditions in the zero ap-
proximation (j = 0) of the stress state of the first type depend
neither on the higher approximations nor on the solutions of
the stress state equations of the second type. Therefore, the
function U is independent of the rest. Then, by simple in-
tegration, functions ¢" are determined using U"’. After that,
the boundary conditions for finding the function V>? are
also completely determined from the Laplace equation.
Solving this equation and determining the functions U>° and
¢*?, we obtain the boundary conditions for finding the func-
tion U,

Conclusions. For elastic (viscoelastic) orthotropic materi-
als, an asymptotic method was developed [10], which allowed
us to reduce the study of problems of a mechanically deform-
able solid body to the sequential solution of boundary value
problems of potential theory. In this paper, an attempt is made
to generalize the above method to two-dimensional problems
of electroelasticity.

The effectiveness of the method depends on whether it is
possible to formulate the corresponding boundary value prob-
lems for the basic equations. It is shown that this can indeed be
done and, therefore, the boundary-value problems of the the-
ory of elasticity for flat orthotropic bodies reduce to succes-
sively solvable problems of the theory of potential. This opened
up new opportunities for the study of many practically impor-
tant problems that lacked both analytical and numerical solu-
tions.
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ACUMNTOTHYHUI METOJ y IBOMIPHHMX 3a/a4aX
€JIEKTPONPYKHOCTI

A. T Ulnopma', T. C. Kaeadiii*, O. JI. Ononpienko?

1 — HamioHanbHMi1 TeXHIYHMI yHiBepcuTeT «JIHimpoBchKa
noJiitexHika», M. JlHinpo, YkpaiHa, e-mail: shportaanna@
ukr.net; kagadiy@i.ua

2 — JIHINpOBCHKUI Aep>KaBHUI arpapHO-€KOHOMIYHMI YHi-
BepcuteT, M. JIHinpo, YkpaiHa, e-mail: onopriienko.oleg@
gmail.com

Mera. VY3arajgpbHeHHS ACUMIITOTUYHOTO METOMLY sl
pPO3B’sI3aHHSI IBOBUMIPHUX 3a7a4 €JIEKTPOIPYKHOCTI. Ypa-
XyBaHHSI €IeKTPUYHMX 3apsiiiB, 0 BUHUKAIOTH Iijl Yac Je-
(opmatlii Ha MOBEPXHSIX I’ €30€JIeKTPUYHUX MaTepiaiis. [le-
peBipKa MOXJIMBOCTI BpaxyBaHHsI MArHiTHOTO TOJIsI Ta 00ep-
HEHOTO e(eKTy ITi/] BIUTMBOM €JIeKTPUYHOTO TTOJISI.

Meroauka. MaTteMaTuuyHa MOZAEIb IT€30€JEKTPUYHOTO
MaTepiajly OIKMcaHa 3a IOIOMOTOI0 DiBHSIHb PiBHOBArW,
eJISKTPONPYKHOTIO CTaHy Ta criBBigHolIeHb Koiiri. YBeneHo
MaJIMii mapaMeTp SK CHiBBiIHOIIEHHS (DI3MYHMX XapakTe-
PUMCTUK MaTepiaiy. 3arpoIroHOBaHi MepPeTBOPEHHSI KOOPIU-
HaT i HEBiTOMUX (PYHKILiH, 1110 3aJIeXKaTh BiJl BKa3aHOTO Mapa-
METpy.

PesynbraTi. YBeneHHs BKa3aHUX IMePETBOPEHD T03BOJTH-
JIO PO3LUENUTH BUXiIAHY KpalloBY 3adauyy Ha ABi CKJIAIOBi 3
Pi3HOMaHITHUMU BJIACTUBOCTSMU. KoOXHA 3 HUX MICTUTD SIK
MeXaHiuHy, TakK i eJeKTPUYHY KOMIOHEHTY. Po3B’30K Bil-
IIYKYIOTh Y BUIJISIAI CYNEpIO3MIlii PO3B’SI3KiB 000X THIIIiB.
KoxeH i3 TumiB HanpyxkeHo-1e(OpMOBaHUX CTaHIB MiCTUTh
OCHOBHY (DYHKIIit0 Ta DOTIOMiXHY. Po3kiam mykaHux ¢hyHK-
Lill y psSaM 3a mapamMeTpoM € Ta MoOyloBa aCUMITOTUYHUX
TOCJTIIOBHOCTE! TPU3BOAUTH O TOTO, 11O B KOXXHOMY Ha-
OJIMDKeHHI OCHOBHI (DYHKIIi1 PO3LIYKYIOThCSI 3 piBHSIHB Jla-
iaca abo Ilyaccona. [lonomixHi 3HaxXoAsIThb iHTETpyBaH-
HaM. [IpoBeneHo aHaniz rpaHuMYyHUX yMOB. [lokaszaHo, 1110
BOHU MPAKTUYHO 3aBXIU MOXYTb Oyt chOpMyTbOBaHi IJIst
OCHOBHUX (DYHKIIilA.
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HaykoBa HoBH3HA. 3ampOIIOHOBAHMII paHillle aBTOpaMu
METO/1 3BeIeHHs KpalloBUX 3a1a4 JIiHiiiHO1 Ta HeJliHiliHOT Te-
Opiil MPYXHOCTI 10 MOCJiTOBHOTO PO3B’sI3aHHS 3a1a4 TEOpii
MOTeHIialy ~ y3araJlIbHeHWi IUIsl  BUIAAKYy  CyJacHUX
M’€30€JEKTPUYHMX MaTepialiB, 110 OIMMCaHi PiBHAHHIMU
piBHOBAru eJIeKTPOTIPYKHOCTI.

ITpakTHYHA 3HAYMMICTB. 32 TOTTOMOT'OIO 3aITPOITOHOBAHO-
ro MiIxomy MOXYTb OyTM OTpUMaHi aHAJiTUYHi PO3B’SI3KU
MPaKTUYHO BaxKJIMBUX 3aJa4 €JIEKTPOIPYKHOCTI, MPOBEAEHI
OLIIHKU HampyXeHo-AehOpMOBAHOIO CTaHy BHUPOOIB i3
1’ €30€IEKTPUYHMX MaTepiajiiB. Pe3yibratyi MOXYTb OyTH BU-
KOpUCTaHi SIK HYJIbOBi HaOIVIKEHHSI TIPU YUCEJIbHUX po3pa-
XYHKax.
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enp. O606IIEHNE aCUMIITOTMYECKOTO METona ISl pe-
IIeHWsT IBYyMEPHBIX 3a1a49 3JICKTPOYIIPYTOCTU. YUeT SJIeKTPU-
YEeCKUX 3apsiI0B, BOZHMKAIOLINX MPU a1e(OPMUPOBAHUMU Ha
MOBEPXHOCTSX MhE303JIEKTPUIECKIX MaTepraioB. [IpoBepka
BO3MOXHOCTH y4eTa MAarHUTHOTO MOJIst 1 00paTHOTro 3 heK-
Ta TIPU BO3ICUCTBUU 3JEKTPUICCKOTO TTOJS.

Metoauka. Marematnueckasi MOJEb Mbe303JIeKTpUYe-
CKOTO MaTepHajia OIrMcaHa C TTOMOIIbIO YpaBHEHUI paBHO-
BeCHsl, 3JIEKTPOYIIPYTOro COCTOSIHUS 1 COOTHOIeHui Komu.
BBeneH masblii TapaMeTp KakK OTHOIICHUE (PU3MYECKUX Xa-

pakTepuCTUK MaTtepuana. IlpemoxXeHbl TpeoOpa3oBaHUs
KOOpAMHAT U UCKOMBIX (DYHKIINIA, 3aBUCSIINE OT YKa3aHHO-
TO MmapameTpa.

Pe3syabraTel. BBeneHue ykazaHHBIX ITpeoOpa3oBaHU MO-
3BOJIMJIO PACIICITMTh MCXOMHYIO KPaeBylo 3a1ayy Ha JIBE CO-
CTaBJISIIONIME C Pa3IMYHBIMM CBOMcTBamMu. Kaxmast 3 HUX
COIEPKUT KaK MEXaHUUYECKYIO, TaK M DJICKTPUUECKYIO KOM-
MOHEHTY. PerieHre pa3bICKMBAIOT B BUIE CYTIEPITO3ULIUM Pe-
eHni 0060ux TUMOB. KaXaplii M3 TUIMOB HATPSKEHHO-Ie-
(OpMUPOBAHHBIX COCTOSIHMIA COAEPXKUT OCHOBHYIO (DYHK-
LIMIO U BCITOMOTAaTe/IbHYI0. PaszjioxkeHre NCKOMBIX (DYHKITUIA
B PSIBI MO TapaMeTpy € U MOCTPOSHUE aCUMITOTUYECKHUX
ITOCJICIOBATEIbHOCTE TIPUBOAUT K TOMY, YTO B KaXKIOM
MPUOIMKEHUM OCHOBHBbIE (DYHKUMM Pa3bICKMBAIOTCS U3
ypaBHeHwmit Jlamnaca wim Ilyaccona. BemomoraTenbHbIe —
HaXoIsIT UHTerpupoBaHueM. [1poBeneH aHaIu3 TpaHUYHbBIX
ycnoBuii. [lokazaHo, 4TO OHM TIPAKTMYECKU BCETIa MOTYT
OBITb C(OOPMYJIMPOBAHBI IS OCHOBHBIX (DYHKIIWIA.

Hayunas HoBusHa. [1pemioXXeHHBIN paHee aBTOpaMU Me-
TOJ, CBEIEHUS KPAeBbIX 3a7a4 JUHEWHOM U HEJIMHEWHOM TeO-
PUM YIIPYTOCTH K TTOC/IEI0BATEIbBHOMY PEIICHUIO 3a1a4 T€O-
pyY OTeH1Maj1a 0000IIEH IS CTyyast COBPEMEHHBIX Mbe30-
3JIEKTPUYECKUX MaTepraIoB, KOTOPHIC OTIMCAHBI YpaBHEHM -
SIMU 3JICKTPOYITPYTOCTH.

IIpakTyeckas 3HaYMMOCTh. C TTOMOIIIBIO TIPEIIOKEHHO-
T'O MIOJIX0/1a MOTYT OBITh MOJIyYeHbI AHATUTUYECKME PELIEHUST
MPAaKTUIECKU BaXKHBIX 3a/1a4 DJICKTPOYIIPYTOCTH, TTPOBEICHBI
OLIEHKM HampsiKeHHO-Ie(POPMUPOBAHHOIO COCTOSIHUSI W3-
IeIUid M3 TIbe303JIEKTPMUECKUX MaTepHuasioB. Pe3ynbraThb
MOTYT OBITh UCITOJIb30BAHBI KaK HYJI€BbIe TPUOIVIKEHUS TTPU
YHCJIEHHBIX pacyeTax.

KnroueBbie cioBa: ssexmpoynpyeocms, e3aumodeiicmeue,
aHalumu4eckoe peulerue, Nbe303NeKmpuUecKuil, acumMnmomu-
yeckuil Memod, 08yMepHble 3a0a4u, Nbe30eNeKmpPOMAacHUmMHble
an1eMeHmbL
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