- 3 Жданова Р.В. Государственная кадастровая оценка земельных участков в новых условиях // Международный сельскохозяйственный журнал. Земельные отношения и землеустройство. 2017. №5. С.4-7
- 4 Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 341 с.
- 5 Классификация и диагностика почв СССР. М.: Колос, 1977. 224 с.
- 6 Методические указания о государственной кадастровой оценке, утвержденное Приказом Минэкономразвития РФ от 12.05. 2017 № 226.
- 7 Сапожников П.М., Столбовой В.С. Методология создания информационного ресурса для целей оценки, контроля и мониторинга состояния земель сельскохозяйственного назначения. Имущественные отношения в Российской Федерации. 2012. № 10. С. 82-91.
- 8 Сапожников П.М., Табакова С.А. Актуальные вопросы проведения государственной кадастровой оценки земель сельскохозяйственного назначения в Российской Федерации. Вопросы оценки. 2013. № 1 (71). -С. 9-14.
- 9 Столбовой В.С. Единый государственный реестр почвенных ресурсов основа развития земельных отношений в России. // В сборнике: Современные методы исследований почв и почвенного покрова. Материалы Всероссийской конференции с международным участием. 2015. С. 130-147.
- 10 Федеральный закон «О государственной кадастровой оценке» от 3 июля 2016 № 237-Ф3.
- 11 Фридланд В.М. Структура почвенного покрова. М.: Изд-во «Мысль», 1972. 423 с.

УДК 631.43: 631.6.02

ОСОБЕННОСТИ ДИНАМИКИ ЭДАФИЧЕСКИХ ХАРАКТЕРИСТИК СМЫТЫХ И ТЕХНОГЕННО НАРУШЕННЫХ ЧЕРНОЗЕМОВ ОБЫКНОВЕННЫХ В УСЛОВИЯХ ЮЖНОЙ СТЕПИ УКРАИНЫ

В.А. Забалуев¹, А.А. Мыцык², В.Т. Пашова², А.А. Гаврюшенко² ¹Национальный университет биоресурсов и природопользования, г. Киев, Украина

²Днепропетровский государственный аграрно-экономический университет, г. Днепр, Украина, askold1904@ukr.net

Приведены результаты детального изучения динамики эдафических характеристик эродированных почв и конструкций техноземов под воздействием экологических условий и антропогенного фактора в условиях южной Степи Украины.

Ключевые слова: эродированные почвы, плодородие, баланс гумуса, агроценозы, физикохимические и агрофизические показатели почвы, техноземы, рекультивация, почвообразование, бобово-злаковые травосмеси.

Введение. В Украине площади эродированных почв составляют свыше 15 млн. га, а на территории Днепропетровской области на 44% площадей сельскохозяйственных угодий. Для обеспечения стабильности и высокой

продуктивности агроценозов первостепенное значение имеет почвозащитная система земледелия, которая обеспечивает бездефицитный баланс гумуса и основных питательных веществ, улучшает физико-химические и агрофизические показатели почвы.

В процессе сельскохозяйственного использования плодородие склоновых почв подвержено изменениям, характер которых зависит от агроэкологических особенностей ландшафта и антропогенного фактора [2, 9].

Технология рекультивации нарушенных дальнейшего ДЛЯ сельскохозяйственного предусматривает формирование использования искусственных почвенных конструкций (техноземов) с нанесением спланированные отвалы плодородного слоя гумусированной почвенной массы разной мощности. Такие объекты являются качественно новыми естественнообразованиями, техногенными В которых происходит современное почвообразование с ноль "момента". За 50-летний период в них произошли качественные и количественные изменения эдафических характеристик, исследование которых позволит спрогнозировать развитие и эволюцию, а также мероприятия ускорению почвогенезиса ПО управления плодородием с учетом целевого назначения и особенностей конкретных условий [1, 2, 4, 8-10].

Объекты и методы. Объектом исследования эродированных почв было изучение морфологических признаков, потенциального и эффективного плодородия, макро и микроэлементного состава под влиянием природных и антропогенных факторов.

Изучение агроэкологических особенностей плодородия смытых почв проводилось в подзоне черноземов обыкновенных левобережья на базе экологического полигона ДГАЭУ расположенного в зоне Степи Украины. Для почв полигона характерна различная эродированность, которая зависит от экологических условий – освещенности, теплообеспеченности, влажности.

Исследования по восстановлении нарушенных черноземов проводились на специально созданной в процессе горнотехнической рекультивации внешнего отвала марганцевого карьера научно-исследовательской станции по рекультивации земель Днепропетровского государственного аграрно-экономического университета и Орджоникидзевского горно-обогатительного комбината вблизи г. Орджоникидзе (сейчас г. Покров) Никопольского района Днепропетровской области (Азово-Причерноморская провинция, 47°39'N, 34°08'E). В течение 1968-1970 гг. были сформированы следующие основные модели (конструкции) техноземов:

Первая модель (ЛС) сформирована техногенной смесью лессовидных отложений толщиной около 2 м без покрытия гумусированным слоем зональной почвы. Общая площадь — 2 га, в сельскохозяйственном освоении с 1973 года. Вторая модель (КБГиС) - сформирована техногенной смесью краснобурых глин и суглинков. Площадь — 1 га, в сельскохозяйственном использовании - с 1971 года. Третья модель (СЗГ) - смесь серо-зеленых мергелистых глин. Площадь 1 га; в сельскохозяйственном освоении с 1971

года. Четвертая модель (ПСП) имеет такую конструкцию: на спланированную поверхность отвала из вскрышных потенциально плодородных горных пород нанесенный 50 см плодородный слой почвы (смесь почвенной массы гумусово-аккумулятивного и первого переходного генетических горизонтов чернозема обыкновенного). Общая площадь – 2,7 га; в сельскохозяйственном освоении - с 1973 года.

По каждой модели техноземов и эродированным почвам отбирали образцы через каждые 10 см на глубину до 1,5 м. Анализы выполняли в трех- и пятикратной повторности. Аналитические исследования горных пород и почвенной массы проводили по следующим методикам: плотность твердой фазы почвы - пикнометрическим (ГОСТ 4745: 2007); плотность сложения почвы - методом режущего кольца (ГОСТ ISO 11272-2001); общая пористость - расчетно; содержание общего гумуса - по методу И.В. Тюрина в модификации С.Н. Симакова (ГОСТ 4289: 2004); рН водное (ГОСТ ISO 10390: 2005); общий азот - по Кьельдалю; подвижные соединения фосфора и калия - модифицированным методом Мачигина (ГОСТ 4114-2002) [3-7].

Обсуждение результатов. Для повышения плодородия эродированных почв необходимо улучшить их водный режим, что достигается приемами агротехники и созданием экологических условий улучшения питания растений азотом, фосфором, калием и микроэлементами. Мы изучали обеспеченность смытых почв валовыми и доступными запасами макро- и микроэлементами. Результаты определения общего содержания азота, фосфора и калия приведены в таблице 1.

Таблица 1 - Валовое содержание и запасы питательных веществ в эродированных почвах

Элемент	Слой,	Гумус		Азот		Фосфор		Калий	
рельефа/почва	CM	%	т/га	%	т/га	%	т/га	%	т/га
Плакор, полнопрофильный чернозем обыкновенный	0-20	4,15	99,6	0,23	5,5	0,135	3,2	2,24	53,7
	20-40	3,40	81,6	0,21	5,0	0,126	3,0	2,30	55,2
	40-60	2,10	50,4	0,17	4,1	0,123	2,9	2,28	54,7
	Всего	-	232,6	-	14,6	-	9,1	-	163,6
Склон северной экспозиции- слабосмытые почвы	0-20	3,08	74,0	0,21	5,0	0,126	3,0	2,20	52,8
	20-40	2,75	66,0	0,16	3,8	0,118	2,8	2,16	51,8
	40-60	1,35	32,4	0,12	2,9	0,103	2,5	2,14	51,3
	Всего	-	172,4	-	11,7	-	8,3	-	155,9
Склон южной экспозиции- среднесмытые почвы	0-20	1,95	46,8	0,16	3,8	0,110	2,7	2,13	51,1
	20-40	1,85	44,4	0,14	3,4	0,089	2,1	2,11	50,6
	40-60	0,8	19,2	0,10	2,4	0,087	2,0	2,01	48,2
	Всего	-	110,4	-	9,6	-	6,8	-	149,9

Таблица 2 - Влияние экологических условий на содержание усвояемых питательных веществ в почвах склонов

Элемент рельефа/почва	Слой,	Сумма минерального азота, мг/кг	Фосфор по Мачигину, мг/кг	Калий по Мачигину, мг/кг	Азот	Фосфор	Калий
		мил аз ф Мач Мач	кг/га				
Плакор,	0-20	33,5	28,3	361	80,4	67,9	866
полнопрофильный чернозем обыкновенный	20-40	23,3	17,7	214	56,0	42,5	514
	40-60	13,9	11,7	185	33,4	20,1	444
	Всего	-	-	-	169,8	130,5	1894
Склон северной экспозиции- слабосмытые почвы	0-20	25,2	16,0	191	60,5	38,4	458
	20-40	15,5	11,8	141	37,2	28,3	338
	40-60	11,3	9,8	112	27,1	23,5	269
	Всего	-	-	-	124,8	90,2	1065
Склон южной	0-20	25,3	14,2	141	60,7	34,1	338
	20-40	8,7	11,0	113	20,9	26,4	271
экспозиции-	40-60	2,8	9,1	104	6,7	21,8	250
среднесмытые почвы	Всего	-	-	-	88,3	82,3	859

Под влиянием агроэкологических условий запасы гумуса снижаются на 35-47 %, общего азота на 9-24 %, а фосфора -7-12 %, калия -2-5 % (табл. 1). Снижение азота в сравнении с гумусом проходит медленнее и потому соотношение C:N становится уже -10,5 на полнопрофильных и 7,4 на среднесмытых почвах.

Содержание и запасы калия в черноземах обыкновенных значительные даже при потере от смыва.

В питании растений основную роль играет эффективное плодородие, которое характеризуется запасом усвояемых питательных веществ в почве.

Основной доступной формой азотного питания в почве является растворимые минеральные соединения, которые легко усваиваются корневой системой растений.

Данные таблицы 2 свидетельствуют об ухудшении обеспеченности азотом растений под влиянием экологических условий (снижение суммы минерального азота составило 33%). Одновременно отмечено снижение энергии нитрификации в пахотном слое на 43 %. Почвы склонов северной и южной экспозиций в слое 0-20 см имеют повышенную уреазную активность, по сравнению с плакорными почвами, но с глубины 30-40 см она снижается.

Для исследования изменений и свойств базовых конструкций техноземов за 40-летний период сельскохозяйственного освоения были использованы эдафические характеристики первично сформированных техноземов, опубликованные в работах Н.Д. Горобца (1973), Н.Т. Масюка (1982), В.А. Забалуева (1996).

Длительное (1973-2016 гг.) сельскохозяйственное освоение и использование разнокачественных моделей техноземов определило такие изменения (табл. 3):

- плотность сложения в конструкции, представленной плодородным слоем зональной почвы (чернозем обыкновенный) при длительном использовании (2016) составляла 1,12 г/см³, что на 0,10 г/см³ меньше по сравнению с 1973 г. В модели (ЛС) произошло разуплотнение верхнего слоя на 0,15 г/см³ (1982 г.) и 0,11 г/см³ (1996 г.).

В вариантах со смесью красно-бурых глин и суглинков и серо-зеленой глиной разуплотнение составило 0,14 г/см³ и 0,19 г/см³. Такие изменения обусловлены длительным выращиванием бобово-злаковых трав, полевых зерновых культур и обработкой почвы. Плотность твердой фазы практически не изменилась.

- показатели общей пористости, скважности аэрации в конструкции с плодородным слоем зонального почвы при длительном использовании постепенно увеличивались ($52,5 \rightarrow 59,2 \rightarrow 60,3\%$), однако с завершением интенсивного использования многолетних поликомпонентных агроценозов - уменьшились до 56,4%.

В модели с лессовидным суглинком процесс был похожий. В конструкциях с глинами произошел увеличение показателей пористости и скважности аэрации по сравнению с первично сформированными техноземами.

Таблица 3 - Динамика агрофизических свойств базовых моделей техноземов при длительном сельскохозяйственном использовании (при расчете на 0-20-см слой)

Варианты конструкций техноземов:	Плотность сложения, $\Gamma/\text{см}^3$	Плотность твердой фазы, г/см ³	Общая пористость , %	Скважность аэрации, %	Коэффициент скважности, K_n				
1973 год (после формирования поверхности опытного поля)*									
1	1,22	2,57	52,5	37,5	1,11				
1	(1,19-1,28)**	(2,55-2,58)	(49,8-53,1)	(36,2-38,1)	(1,07-1,16)				
2	1,24	2,66	53,3	35,3	1,14				
	(1,21-1,31)	(2,63-2,67)	(52,6-54,2)	(33,8-36,1)	(1,11-1,19)				
3	1,37	2,68	48,8	25,7	0,95				
	(1,28-1,39)	(2,66-2,69)	(46,4-49,1)	(23,8-26,3)	(0,86-0,97)				
4	1,42	2,70	47,4	26,1	0,91				
4	(1,36-1,44)	(2,67-2,70)	(45,2-48,7)	(25,4-26,8)	(0,84-0,93)				
	1982 *								
1	1,04	2,55	59,2	44,1	1,45				
	(1,03-1,11)**	(2,53-2,56)	(58,1-59,4)	(42,6-44,5)	(1,33-1,48)				
2	1,09	2,64	58,7	43,1	1,42				
	(1,07-1,14)	(2,62-2,66)	(58,8-59,3)	(43,8-44,2)	(1,38-1,49)				
3	1,26	2,67	52,8	34,9	1,12				
	(1,21-1,29)	(2,64-2,69)	(46,4-49,1)	(32,4-35,2)	(1,07-1,13)				
4	1,28	2,71	52,7	34,5	1,11				
4	(1,23-1,30)	(2,68-2,72)	(51,2-53,4)	(32,7-34,6)	(1,05-1,13)				
1996 *									

1	1,01	2,55	60,3	45,1	1,51			
	(0,97-1,07)	(2,54-2,58)	(58,5-60,9)	(39,5-42,4)	(1,27-1,38)			
2	1,13	2,66	57,5	40,3	1,35			
	(1,11-1,19)	(2,62-2,68)	(56,4-58,1)	(38,1-40,8)	(1,27-1,37)			
3	1,31	2,65	50,5	28,1	1,02			
	(1,24-1,33)	(2,63-2,66)	(48,9-51,4)	(27,2-29,3)	(0,96-1,18)			
4	1,34	2,69	50,1	27,8	1,01			
	(1,23-1,36)	(2,65-2,70)	(49,2-51,7)	(25,8-28,7)	(0,99-1,14)			
	2016							
1	1,12	2,57	56,4	40,4	1,29			
	(1,08-1,17)	(2,55-2,58)	(55,8-56,6)	(38,6-41,1)	(1,22-1,31)			
2	1,21	2,66	54,5	37,2	1,19			
	(1,18-1,22)	(2,63-2,67)	(53,7-56,2)	(36,9-38,9)	(1,17-1,24)			
3	1,23	2,68	54,1	36,5	1,17			
	(1,20-1,25)	(2,66-2,69)	(52,8-55,1)	(34,4-37,2)	(1,12-1,19)			
4	1,23	2,70	54,4	36,9	1,19			
	(1,19-1,26)	(2,67-2,70)	(53,7-55,7)	(35,5-37,2)	(1,13-1,21)			

^{*} По данным Н.Д. Горобца (1973); Н.Т.Масюка (1982); В.А. Забалуева (1996).

Варианты конструкций техноземов: 1. Плодородный слой зональной почвы (техническое смесь горизонтов Н и НР); 2. лессовидные суглинки; 3. Смесь красно-бурых глин и суглинков; 4. Серо-зеленые мергелистые глины.

Выводы. Таким образом, при изучении ПОЧВ склонов отмечено микроэлементов перераспределение макро-И В почвенном профиле: накопление в гумусово-аккумулятивном горизонте и аккумуляция растворимой формы при изменении кислотно-щелочных условий. Образованные на склонах эродированные почвы имеют много переходных генетических форм, которые отличаются от зональных. Установлено, что почвы склонов представляют собой не эродированные разновидности водораздельных видов черноземов, а особенные более аридные почвы, на которые наложился процесс эрозии.

Результаты научных исследований рекультивированных почв дополняют информационную базу данных эдафических показателей и их динамических изменений в разнокачественных моделях техноземов, что позволяет более эффективно управлять технологическими процессами при проведении горнотехнического и биологического этапов рекультивации земель нарушенных горными разработками.

Литература

- 1 Андроханов В.А. Техноземы: свойства, режимы, функционирование. / В.А. Андроханов, С.В. Овсянникова, В.М. Курачев. Новосибирск: Наука. Сиб. изд. Фирма РАН, 2000. 200 с.
- 2 Бекаревич Н.Е., Эколого-биологические предпосылки сельскохозяйственного освоения участков открытых разработок в Никопольском марганцеворудном бассейне / Н.Е. Бекаревич, Н.Т. Масюк // Почвы Днепропетровской области и пути их рационального использования. Днепропетровск: Промінь, 1966. С. 69–74.

^{**} Примечание. Варьирование показателей.

- 3 Вадюнина А.Ф. Методы исследования физических свойств почв. А.Ф. Вадюнина, З.А. Корчагина. М.: Агропромиздат, 1986. 416 с.
- 4 Гаврюшенко А.А. Обоснование динамики плотности сложения моделей техноземов при сельскохозяйственном освоении в условиях Никопольского марганцеворудного бассейна // Вестник аграрной науки Причерноморья. 2013. Выпуск 3 (73). С. 149-154.
- 5 Забалуев В.А., Гаврюшенко А.А. Обоснование динамики структурно-агрегатного состояния моделей техноземов при биологическом освоении в условиях Никопольского марганцеворудного бассейна // Известия СПбГАУ. 2014. № 37. С. 62-64.
- 6 Забалуев В.А., Мыцык А.А., Пашова В.Т., Гаврюшенко А.А. Динамика азотного режима модульных конструкций техноземов в результате длительного фитомелиоративного действия агроценозов в условиях Никопольского марганцеворудного бассейна // Сборник материалов международной научной конференции (Природно-техногенные комплексы: современное состояние и перспективы восстановления. Новосибирск ; Новокузнецк, 13-18 июня 2016 г.). Издательство СО РАН (Новосибирск). С. 96-100.
- 7 Масюк Н.Т. Экологический подход к оценке биологических ресурсов естественных и искусственно созданных экотопов. / Н.Т. Масюк // В кн.: Биологический круговорот веществ: Тез. докл. Всесоюзн. конф. М.: Наука, 1982. С. 85-86.
- 8 Медведев В.В. Оптимизация агрофизических свойств черноземов / В.В. Медведев. М.: ВО «Агропромиздат», 1988. 160 с.
- 9 KHARYTONOV M. M., PASHOVA V. T., BAGORKA M. O., & KOZECHKO V. (2016). Nutrition regimes of eroded lands in the northern steppe zone of Ukraine. Agriculture & Forestry/Poljoprivreda i Sumarstvo, 62(3).
- 10 Шеин Е.В. Изменение физических свойств слоистых рекультивационных почвенных конструкций / Е.В. Шеин, Д.И. Щеглов, И.В. Соколова, А.Б. Умарова // Вестн. Оренбургского гос. ун-та. 2006. № 12. Ч. 2. С. 308–312.

УДК 631.4

ОСОБЕННОСТИ СВЕТЛО-СЕРЫХ И СВЕТЛО-СЕРЫХ ОГЛЕЕННЫХ ПОЧВ СЕВЕРА ТАМБОВСКОЙ РАВНИНЫ

И.М. Даутоков, В.Н. Красин, Л.В. Степанцова Мичуринский государственный аграрный университет, г. Мичуринск, Stepanzowa@mail.ru

На пылевато-песчаных водно-ледниковых отложениях севера Тамбовской равнины формируется комплекс светло-серых и светло-серых поверхностно-оглеенных почв. Характерные новообразования — псевдофибры в переходном и ортштейны - в пахотном горизонтах. По гранулометрическому составу почвы пылеватая супесь. Почвы характеризуются плохой структурой, слабокислой реакцией, низким содержанием гумуса, высоким и повышенным содержанием элементов питания. Низкий диапазон активной влаги гумусовых горизонтов определяет