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Abstract: The paper presents the results on resistance of Aesculus hippocastanum Linnaeus, 1753 trees
to Cameraria ohridella Deschka & Dimić, 1986 (Lepidoptera, Gracillariidae) impact under conditions of
a modern urban environment on the example of Dnipro city as the largest industrial city in Ukraine.
Field experiments were conducted in all park areas of the city, which allowed covering the full
gradient of the existing urban environment and considered the different degrees of the tree settlement
by the invasive insect species. The research of the impact of C. ohridella caterpillars’ vital activity on
the photosynthetic apparatus state was carried out by applying a chlorophyll fluorescence induction
technique. Diagnosis of photosynthetic dysfunction of fresh Ae. hippocastanum leaves was conducted
using a portable “Floratest” fluorometer manufactured in Ukraine. Interpretation of the obtained
Kautsky curves showed that significant changes in their critical parameters associated with the
degree of leaf damage by C. ohridella caterpillars were not detected. The influence of tree growth site
conditions on the following 4 main indicators of chlorophyll fluorescence induction was established:
the initial value of fluorescence induction after irradiation; the value of “plateau” fluorescence induc-
tion; the maximum value of fluorescence induction; the stationary value of fluorescence induction
after light adaptation of the plant leaf. It was found that the efficiency coefficients of photochemical
processes in Ae. hippocastanum trees growing in low terrain levels differed significantly, which can
probably be interpreted as their response to the specific characteristics of the urban environment.

Keywords: urban environment; invasive insects; biology of invaders; the vital activity of invasive
miner moths; resistance of urban dendroflora; adaptation of introducents; photosynthetic apparatus
of trees; the Kautsky curve

1. Introduction

The environment of an industrial city encompasses a large number of stressors for
plants that inhibit their development and vital activity [1–3]. Among the dominant stress
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factors that affect living organisms in urban conditions, effects of climate changes associated
with rising air temperatures and drought occurrence [4], pesticide contamination from
surrounding agrocenoses [5,6], motor transport and industrial enterprises emissions are of
particular interest [7–10]. Harmful effects of pollutants can manifest themselves in various
functional changes in trees, including their interactions with lepidopteran phytophages [11]
and predators that feed on these phytophages [12–14]. In an urban environment, disrup-
tion of biochemical reactions, physiological functions, morphostructure, and reduction of
resistance to pests and diseases are observed in woody plants depending on concentration
of the toxic substances and duration of their exposure.

In the last two decades, horse chestnut (Aesculus hippocastanum L.) introduced to the
Steppe zone of Ukraine has suffered greatly from the invasive miner Cameraria ohridella
Deschka & Dimić, 1986, which is manifested in damage of assimilating organs, premature
defoliation and resulted in a significant reduction of reserve materials necessary for the
normal plant life [15,16]. It worsens the condition and sometimes causes premature death
of the trees [17,18].

Diagnostics of the influence of environmental factors for the purpose of rapid assess-
ment of plant functional state requires the use of express and informative techniques that
would allow conducting analysis both in the laboratory and in the field conditions with
minimal violation of the studied object integrity. Such techniques include the method of
chlorophyll fluorescence induction widely applied in modern studies of photosynthetic
processes [19–23].

Photosynthesis is one of the processes most vulnerable to stressors, so valuable in-
formation on the state of the photosynthetic apparatus in a plant under the impact of
phytophage feeding can be obtained by fluorescence analysis [24,25]. The influence of
many different urbanized factors on the functional state of woody plant leaves resulted in
adaptive changes of plants accompanied by certain morphological changes in the assimila-
tion apparatus, as well as a shift in seasonal developmental rhythms [26,27].

It is known that certain sections of the chlorophyll fluorescence induction curve may
be used as indicators of the corresponding physiological processes in the photosynthetic
chain. Violations of its particular components caused by exo- and endogenous factors
show themselves in specific changes in the corresponding sections of the curve. The
photosynthetic apparatus in plants was characterized using the method in many woody
plants growing in an urban environment due to its close relationship with chlorophyll
fluorescence intensity [28–30]. White oak (Quercus alba L.) compared to red maple (Acer
rubrum L.) shows more significant differences in chlorophyll fluorescence parameters under
megalopolis conditions compared to these species growing in native forest conditions [31].
The results of Uhrin & Supuka [32] confirmed that the Fv/Fm (maximum efficiency of
primary photosynthesis processes) parameter proved to be an effective tool for measuring
the growth response of roadside sycamore maple (Acer pseudoplatanus L.) in the transformed
urban environment. Analysis of the Fv/Fm, Frd (fluorescence reduction coefficient, which
characterizes the quantum efficiency of photosynthesis or the viability index), and PCII
(stability of light-harvesting complexes photosystem II to the influence of different strains
of pathogens) parameters allowed assessing the adaptation potential of wild pear (Pyrus
pyraster L.) and European mountain ash (Sorbus domestica L.) trees to water deficiency [33].
Results obtained demonstrate the possibility to use changes in certain sections of the
chlorophyll fluorescence induction curve to detect deterioration in the life state of Moreton
Bay fig (Ficus macrophylla Pers.), london plane (Platanus × acerifolia (Aiton) Willd.), Chinese
elm (Ulmus parvifolia Jacq.) in drought conditions [34], and to assess the resistance of horse
chestnut (Aesculus hippocastanum L.), small-leaved lime (Tilia cordata Mill.), and European
white birch (Betula pendula Roth.) trees to soil salinization due to the use of salt as deicing
agent [35]. It was found that the chlorophyll fluorescence Fv/Fm parameter of eucalyptus
(Eucalyptus saligna Sm.) leaves have statistically significant association with wood density
and the amount of wood decomposition in summer period [36]. The effect of heavy
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trimming of roadside small-leaved lime trees (Tilia cordata Mill.) on the photosynthesis
process was investigated compared to neighboring non-trimmed trees [37].

Changes in chlorophyll fluorescence parameters may indicate the effect of phy-
tophagous insects on the plant photosynthetic apparatus [38–40]. For example, it has been
demonstrated a close relationship between the level of damage of cork oak (Quercus suber L.)
and holm oak (Quercus ilex L.) trees by the great capricorn beetle and chlorophyll content
in leaves depending on the age of the phytophage [41]. The effect of different residential
densities of Coccus hesperidum L. (Hemiptera, Coccidae) per leaf on the plant pigments
concentration (chlorophyll a, chlorophyll b, and carotenoids) and chlorophyll fluorescence
parameters (maximum quantum yield of photosystem II Fv/Fm, the effectiveness of “open”
reaction enters (RC) in the light Fv/Fm, and coefficient of non-photochemical of chlorophyll
QN and coefficient of photochemical quenching of chlorophyll QP) was studied in lemon
plants (Citrus limon var. ponderosa L.) and ferns (Nephrolepis biserrata (Swartz) Schott.). The
effect of the degree of infestation with C. hesperidum on the pigments loss in plants and
changes in the photosynthetic productivity of host plants was characterized [42].

The goal of our study was to establish the effect of C. ohridella feeding on the crit-
ical parameters of the Kautsky curve of A. hippocastanum in different conditions of the
urban environment.

2. Material and Methods

The research was conducted during the 2019 growing season in Dnipro city (Ukrainian
North Steppe subzone). The city is situated in temperate zone with a relatively active
atmospheric circulation (the atmospheric circulation is predominantly from east to west).
The climate is temperate continental [15,43,44]. One of the climate features in the territory
is the wide fluctuations in weather conditions from year to year. Moderately wet years
alternate with sharply dry ones, and hot dry winds occurrs fairly common. In general, the
climate is characterized by rather cool winters and hot summers.

Within Dnipro city territory, we selected eight park ecosystems (Figure 1, Table 1) that
have different conditions of horse chestnut growth (Table 2). Four trees of Ae. hippocastanum
were selected on the territory of each park area with similar morphological and taxational
characteristics (trunk diameter 132–151 cm; height 17–21 m).
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Table 1. Characteristics of research areas.

No. Name Park Coordinates Altitude Above Sea Level, m

1 Botanical Garden of DNU 48◦26′14′′ N, 35◦02′35′′ E 127
2 Novokodatskyi Park 48◦29′08′′ N, 34◦56′42′′ E 82
3 Taras G. Shevchenko Park 48◦27′48′′ N, 35◦04′23′′ E 83
4 Pridneprovsky Park 48◦23′59′′ N, 35◦07′59′′ E 75
5 Metallurgists Square 48◦28′26′′ N, 34◦59′31′′ E 65
6 Lazaria Hloby Park 48◦28′11′′ N, 35◦01′48′′ E 56
7 Druzhby narodiv Forest Park 48◦32′02′′ N, 35◦05′42′′ E 65
8 Park Sahaydak 48◦29′13′′ N, 35◦03′41′′ E 50

Table 2. Characteristics of the location of parks within the gradient of landscape and soil-climatic
conditions.

No. Name

Relief Part
(Floodplain,

Sandy Terrace,
Third Terrace,

Ravine,
Watershed)

Mechanical
Composition
of Soil (Sand,
Sandy Loam,
Loam, Clay)

Soil Humus
Content, %

Slope
Exposure and
Steepness (for
Example, 3%
Northwest-

Facing
Slope)

Park Area, ha

Degree and
Predominant Type of

Anthropogenic Impact
(for Example, Moderate

Recreation, Heavy
Aerogenic Pollution)

Share of a
Target Tree of
all the Trees

in the Park, %

1 Botanical
Garden of DNU

Watershed,
upper third of

ravine
loam 2.3–5.7

7◦northeast-
facing
slope

46
moderate recreation,
moderate aerogenic

motor vehicle pollution

<1

2 Novokodatskyi
Park floodplane loam 3.1–3.8

various-
exposured

slopes, 2–7◦
35

moderate recreation,
moderate aerogenic

motor vehicle pollution,
heavy aerogenic

industrial pollution,

1.4

3
Taras G.

Shevchenko
Park

upland with
access to

watershed
loam 3.2–4.8 15◦ northwest-

facing, 57
moderate recreation,
moderate aerogenic
industrial pollution

16

4 Pridneprovsky
Park sandy terrace sandy loam 0.9–1.4 - 7

moderate recreation,
heavy aerogenic

industrial pollution,
12

5 Metallurgists
Square watershed loam 2.8–3.4 - 3.8

moderate recreation,
moderate aerogenic

motor vehicle pollution,
moderate aerogenic
industrial pollution,

8

6 Lazaria Hloby
Park floodplane loam 3.3–4.7 - 26

moderate recreation,
moderate aerogenic

motor vehicle pollution,
mild aerogenic

industrial pollution

<1

7
Druzhby

narodiv Forest
Park

third terrace loam 2.2–4.6 - 90
moderate recreation,
moderate aerogenic

motor vehicle pollution
<1

8 Park Sahaydak floodplane
Sandy loam

(filling
artificial soils)

0.7–1.6 - 34

moderate recreation,
moderate aerogenic

motor vehicle pollution,
moderate aerogenic
industrial pollution

<1

To study the effect of C. ohridella caterpillars feeding on the photosynthesis processes
in Ae. hippocastanum plants, leaves of medium formation were selected at 5 pcs. from the
illuminated crown exposition (which was mostly infected by a miner). Model leaves were
selected on annual vegetative growth from the lower third in dry weather. Each examined
leaf was marked individually.

The research was conducted on 14 June 2019, which corresponded to the develop-
ment of the 5th-age caterpillars of C. ohridella second generation, which begins to give an
irruption in this generation in the conditions of Dnipro city. The age of the caterpillars was
determined with the visual parameters of the mines made by their. The damage degree
of the horse chestnut leaf blades by C. ohridella was assessed visually with a previously
self-developed scale [15]. Light intensity measurements were conducted with RCE-174 lux-
ometer (PCE Instruments, Meschede, Germany, 2018). Temperature and relative humidity
measurements were conducted with HE-173 thermohygrometer (Huato Electronic Co.LTD,
Shenzhen, China, 2018).
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Portable fluorometer “Floratest” was used for the diagnosis of native chlorophyll
disorders in fresh Ae. hippocastanum leaves. Portable fluorometer “Floratest” comprises
a base unit with a graphic liquid crystal display, control buttons, a remote optoelectronic
sensor, connecting cable to the USB port of a personal computer, and a network adapter.
The remote optoelectronic sensor includes an LED that has a maximum radiation intensity
of λ = 470 ± 20 nm. Irradiation indicators in the sensor were the following: irradiation
wavelength 470 ± 15 nm; irradiated spot area not less than 15 mm2; light intensity within
the spot at least 2.4 W/m2. Signal reception indicators in an optoelectronic sensor: the
spectral range of fluorescence intensity measurement was 670–800 nm; receiving window
area 9 mm2; photodetector sensitivity at λ = 650 nm was 0.45 A/W.

Observations were made using fresh Ae. hippocastanum leaves. After the start of light
exposure, the intensity of chlorophyll fluorescence (fluorescence induction or fluorescence
induced (caused) by light) begins to change significantly over time. The time dependence
of the chlorophyll fluorescence intensity has the characteristic form of a curve having one or
more maximum, and it is called the chlorophyll fluorescence induction curve (the Kautsky
curve) (Figure 2).
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Figure 2. Typical chlorophyll fluorescence induction curve [45]: F0 is the initial value of fluorescence
induction after irradiation is turned on; Fp is the “plateau” fluorescence induction value; Fm is the
maximum value of fluorescence induction; FSt is the stationary value of fluorescence induction after
light adaptation of a plant leaf.

The shape of this curve is quite sensitive to changes that occurred in the photosynthetic
apparatus in plants when adapting to different environmental conditions, which has
become the basis for the widespread use of the Kautsky effect in the study of photosynthesis.
To interpretation the Kautsky curve [45], we used its known critical parameters: F0 means
the initial value of fluorescence induction after irradiation is turned on; Fp means the
value of “plateau” fluorescence induction; Fm means the maximum value of fluorescence
induction; FSt means the stationary value of fluorescence induction after light adaptation of
a plant leaf In addition to the critical parameters of the Kautsky curve, we used calculated
parameters as variable chlorophyll fluorescence (Fv = Fm − F0); maximum efficiency of
primary photosynthesis processes (Ef = Fv/Fm), and coefficient of photochemical processes
efficiency (E = (Fm − FSt)/FSt).

The data were analyzed using Statistica 8.0 program (StatSoft Inc., USA). The Table 1
demonstrate the results as x ± SD (mean ± standard deviation). The experimental groups
were determined using ANOVA and the Tukey test, where the differences were considered
significant at p < 0.05. In the Figures small square is median, the upper and lower line of
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the rectangle is 75% and 25% quartiles, the upper line is minimum and maximum values,
circles and asterisks is outliers. The empirical correlation coefficient (r) and its error (Sr)
were calculated to assess the association between the Kautsky curve parameters and the
degree of leaf blade damage; the r/Sr ratio was compared with the threshold value of
Student’s t-test for a given sample size.

3. Results

As a result of the phytosanitary monitoring of park areas in Dnipro city, it was found
that the trees of Ae. hippocastanum were not equally infected with C. ohridella (Table 3).
The analysis of chlorophyll fluorescence induction variability showed specific patterns of
changes in a number of physiological parameters of photosynthesis. Significant changes in
the critical parameters of the Kautsky curve depending on the degree of leaf blade damage
by C. ohridella caterpillars were not detected (Figure 3).

Table 3. Average damage level of Ae. hippocastanum leaf blades by C. ohridella miner (x ± SD, n = 40).

No. Name Average Damage Level

1 Botanical Garden of DNU 0.36 ± 0.008
2 Novokodatskyi Park 0.06 ±0.003
3 Taras G. Shevchenko Park 0.16 ± 0.007
4 Pridneprovsky Park 0.36 ± 0.006
5 Metallurgists Square 0.12 ± 0.004
6 Lazaria Hloby Park 0.47 ± 0.017
7 Druzhby narodiv Forest Park 0.35 ± 0.011
8 Park Sahaydak 0.08 ± 0.009

The use of the fluorescence analysis method allowed the determination the effect of
growing site conditions on individual indicators of chlorophyll fluorescence induction in
the leaves of the studied Ae. hippocastanum trees (Figure 3). High plasticity was established
in the structure of chloroplasts in horse chestnut leaves which was characterized with F0,
Fv, Fp, and FSt parameters. We found significant differences in the above parameters in
Ae. hippocastanum leaves sampled from Botanical Garden of DNU compared to the leaves
of the studied plant species sampled from different parks in Dnipro city. It was noted that
the efficiency coefficients of photochemical processes (E) in Ae. hippocastanum trees in the
parks located at low terrain levels were grouped separately (Figure 4c). The lowest E values
were recorded in horse chestnut trees in Botanical Garden of DNU, Novokodatskyi Park,
Taras G. Shevchenko Park, and Metallurgists Square; this may indicate a decrease in the
intensity of photochemical reactions.

Of all the parameters of the Kautsky curve (Table 4), only E values correlated with
the degree of leaf blade damage by phytophages (p < 0.05). At the same time, a very high
degree of correlation was found between the remaining parameters of the Kautsky curve:
Fp, Fm, Fst, Fv, and Ef (p < 0.001).
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Figure 3. Measurements of physiological parameters of photosynthesis depending on the leaf
damage degree: (a)—F0—the initial value of fluorescence induction after switching on irradiation,
(b)—Fp—the value of fluorescence induction “plateau”, (c)—Fm—the maximum value of fluorescence
induction, (d)—FSt—the steady value of fluorescence induction after light adaptation of the leaf of
the plant, (e)—FV—variable chlorophyll fluorescence, (f)—Ef—the maximum efficiency of primary
photosynthesis processes, (g)—E—efficiency coefficients of photochemical processes; different letters
within each figure indicate significant differences between the groups (p < 0.05) according to the
results of Tukey test, n = 7.
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Figure 4. Variability of photosynthesis characteristics in various urban parks of Dnipro city: (a)—
F0—the initial value of fluorescence induction after switching on irradiation, (b)—Fp—the value
of fluorescence induction “plateau”, (c)—Fm—the maximum value of fluorescence induction, (d)—
FSt—the steady value of fluorescence induction after light adaptation of the leaf of the plant, (e)—
FV—variable chlorophyll fluorescence, (f)—Ef—the maximum efficiency of primary photosynthesis
processes, (g)—E—efficiency coefficients of photochemical processes; at the x-axis: 1—Botanical
Garden of DNU, 2—Novokodatskyi Park, 3—Taras G. Shevchenko Park, 4—Pridneprovsky Park,
5—Metallurgists Square, 6—Lazaria Hloby Park, 7—Druzhby narodiv Forest Park, 8—Park Sahaydak;
at the y-axis: the values of parameters indicated in Table 1; please see Figure 3 for an explanation of
statistical processing.
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Table 4. Correlations between the Kautsky curve parameters and the degree of leaf damage by
phytophages (n = 40).

Characteristic Leaf Damage
Degree, % Fo Fp Fm Fst Fv Ef E

Leaf damage degree,
% 1 – – – – – – –
Fo −0.276 ± 0.156 1 – – – – – –
Fp −0.201 ± 0.159 0.933 ± 0.058 *** 1 – – – – –
Fm −0.127 ± 0.161 0.853 ± 0.085 *** 0.952 ± 0.050 *** 1 – – – –
Fst −0.263 ± 0.157 0.812 ± 0.095 *** 0.890 ± 0.074 *** 0.945 ± 0.053 *** 1 – – –
Fv −0.079 ± 0.162 0.768 ± 0.104 *** 0.909 ± 0.068 *** 0.990 ± 0.023 *** 0.933 ± 0.058 *** 1 – –
Ef −0.053 ± 0.162 0.659 ± 0.122 *** 0.774 ± 0.103 *** 0.889 ± 0.074 *** 0.837 ± 0.089 *** 0.907 ± 0.068 *** 1 –
E 0.320 ± 0.154 * 0.108 ± 0.161 0.143 ± 0.161 0.128 ± 0.161 −0.191 ± 0.159 0.127 ± 0.161 0.148 ± 0.160 1

Notes: *—p < 0.05, ***—p < 0.001.

4. Discussion

The analysis of chlorophyll fluorescence induction variability allowed determining
specific patterns of changes in series of photosynthesis physiological parameters. The
background fluorescence level (F0) depends on the loss of excitation energy during migra-
tion along pigment matrix, as well as on the content of chlorophyll molecules that do not
functionally associated with reaction centers [46,47]. The maximum values of F0 parameter
were recorded in the Ae. hippocastanum leaves sampled from Park Sahaydak and Novoko-
datskyi Park, and the lowest values were observed in leaves sampled from Lazaria Hloby
Park. This is due to the fact that a structural change in the pigment complex associated with
the loss of green leaf tissues under the phytophage influence. As the number of antenna
chlorophylls decreases, the initial level of fluorescence decreases, and vice versa.

The Fp parameter characterizes the highest level of fluorescence, i.e., it means the max-
imum value on the induction curve. It has the most variable pattern characterized by adap-
tive changes [48]. In the structure of the pigment complex in the studied Ae. hippocastanum
plants, the lowest Fp values were found in trees having the highest degree of leaf damage
by C. ohridella larvae (Botanical Garden of DNU, Lazaria Hloby Park, and Pridneprovsky
Park). It was caused by a decrease in the number of both light-harvesting and antenna
chlorophylls. The obtained data are supported by the tendency to decrease the variable
fluorescence of chlorophyll (Fv) with an increase in the damage degree of horse chestnut
leaves by mining moth larvae. The calculated Fv parameter is expressed as the difference
between the highest level of fluorescence and background fluorescence indicating the
amplitude value of changes in the Kautsky curve [49,50].

The value of the steady-state fluorescence level (FSt) also decreased with an increasing
degree of damage of Ae. hippocastanum leaves. This parameter is characterized by a dynamic
equilibrium between the processes that cause an increase in fluorescence and the processes
that lead to its decrease [51]. As shown in Figure 3, there is a significant difference in the
values of all key parameters of chlorophyll fluorescence induction. We have shown that
an increase in the number of C. ohridella mines reduces the values of all major indicators
(F0, Fv, Fp and FSt), which affects the overall physiological state of Ae. hippocastanum
leaves. In general, plant defense responses to insect attacks are very often associated with a
decrease in the rate of photosynthesis [52]. Genotypes that are capable to maintain the rate
of photosynthesis under these conditions probably show greater resistance, i.e., the plant’s
ability to grow, develop, and bear fruit satisfactorily even at a certain level of herbivorous
insect infestation [53].

Another important indicator to assess the functional state of the leaves is the efficiency
of dark photochemical reactions, E. This parameter reflects the relative number of electrons
transported along the electron transport chain. Increasing the efficiency of dark photochem-
ical reactions in the leaves of Ae. hippocastanum sampled in Lazaria Hloby Park, Druzhby
narodiv Forest Park, Park Sahaydak shows that electronic transport on FSII and FSI is more
efficient, while some decrease in E parameter may indicate inhibition of dark photochem-
ical reactions. In addition, the reduction of E coefficient in the leaves Ae. hippocastanum
sampled in Botanical Garden of DNU, Novokodatskyi Park, Taras G. Shevchenko Park and
Metallurgists Square (especially against the background of Fo increasing), may indicate not
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only a decrease in the intensity of photochemical reactions, but also destructive changes in
the photosynthetic apparatus [54,55].

The value of the efficiency coefficient of dark photochemical processes (E) reflects
the activity of ribulose bisphosphate carboxylase as the main enzyme in the Calvin cycle.
Apparently, ribulose bisphosphate carboxylase has not only carboxylase activity, but also
oxygenase activity; thereby, an increase in this enzyme activity can be associated with an
increase in the process competitive to photosynthesis, photorespiration. The photorespira-
tion can account for up to 50% of the enzyme activity. Our correlation analysis confirmed
the current data of numerous researchers [56,57] about the fact that photorespiration pro-
cess has a protective effect on the photosynthetic apparatus in plants, and its intensity
significantly increases under the action of stress factors.

5. Conclusions

Effect of C. ohridella caterpillars on the photosynthetic apparatus in Ae. hippocastanum
allowed determining specific patterns of changes in critical parameters of chlorophyll
fluorescence induction. Significant changes in the critical parameters of the Kautsky curve
depending on the degree of leaf blade damage by C. ohridella caterpillars were not identified.
The use of the fluorescence analysis method allowed determining the effect of growing
site conditions on individual indicators of chlorophyll fluorescence induction in the leaves
of the studied Ae. hippocastanum trees. High plasticity was established in the structure
of chloroplasts in horse chestnut leaves which was characterized with Fo, Fv, Fp, and FSt
parameters. We found significant differences in the above parameters in Ae. hippocastanum
leaves sampled from Botanical Garden of DNU compared to the leaves of the studied
plant species sampled from different parks in Dnipro city. It was noted that the efficiency
coefficients of photochemical processes (E) in Ae. hippocastanum trees in parks located
at low terrain levels were differed markedly. The lowest efficiency coefficients of dark
photochemical reactions were recorded in horse chestnut trees from the Botanical Garden
of DNU, Novokodatskyi Park, Taras G. Shevchenko Park, and Metallurgists Square, which
can probably be associated with the urban environment characteristics.

Author Contributions: Conceptualization, V.B., K.H. and O.P.; methodology, O.S. and K.H.; analysis,
I.L., I.I. and V.B.; investigation, S.S. and O.P.; data curation, V.L., V.B. and Y.G.; writing—original
draft preparation, K.H., V.B. and A.A.; writing—review and editing, all authors; visualization, M.S.,
V.B. and L.B.; funding acquisition, V.L. and Y.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the grants 0122U001226 Innovative concept of management
of ecological functions of introduced tree species in the conditions of urban ecosystems (Ministry of
Education and Science of Ukraine).

Institutional Review Board Statement: The study was conducted according to the regulations for
the protection of terrestrial wild animals.

Informed Consent Statement: Not applicable.

Conflicts of Interest: All authors declare that they have no conflict of interest.

References
1. Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017,

40, 4–10. [CrossRef] [PubMed]
2. Kosova, K.; Vıtamvas, P.; Urban, M.O.; Prasil, I.T.; Renaut, J. Plant abiotic stress proteomics: The major factors determining

alterations in cellular proteome. Front. Plant Sci. 2018, 9, 122. [CrossRef] [PubMed]
3. Zandalinas, S.I.; Mittler, R.; Balfagon, D.; Arbona, V.; Gomez-Cadenas, A. Plant adaptations to the combination of drought and

high temperatures. Physiol. Plant. 2018, 62, 2–12. [CrossRef] [PubMed]
4. Avtaeva, T.A.; Sukhodolskaya, R.A.; Brygadyrenko, V.V. Modeling the bioclimating range of Pterostichus melanarius (Coleoptera,

Carabidae) in conditions of global climate change. Biosyst. Divers. 2021, 29, 140–150. [CrossRef]
5. Komlyk, V.O.; Brygadyrenko, V.V. Morphological variability of Bembidion minimum (Coleoptera, Carabidae) populations under

the influence of natural and anthropogenic factors. Biosyst. Divers. 2019, 27, 250–269. [CrossRef]

http://doi.org/10.1111/pce.12800
http://www.ncbi.nlm.nih.gov/pubmed/27417527
http://doi.org/10.3389/fpls.2018.00122
http://www.ncbi.nlm.nih.gov/pubmed/29472941
http://doi.org/10.1111/ppl.12540
http://www.ncbi.nlm.nih.gov/pubmed/28042678
http://doi.org/10.15421/012119
http://doi.org/10.15421/011935


Int. J. Plant Biol. 2022, 13 233

6. Kozak, V.M.; Romanenko, E.R.; Brygadyrenko, V.V. Influence of herbicides, insecticides and fungicides on food consumption and
body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosyst. Divers. 2020, 28, 272–280. [CrossRef]

7. Shulman, M.V.; Pakhomov, O.Y.; Brygadyrenko, V.V. Effect of lead and cadmium ions upon the pupariation and morphological
changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecol. 2017, 44, 28–37. [CrossRef]
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