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Abstract An electrically conducting crack along a part of an electrode in the interface of a piezoelectric
bimaterial under the action of anti-plane mechanical and in-plane electric loadings is analyzed. The elec-
trode is assumed to be much thinner than the piezoelectric material, and therefore, its mechanical properties
are neglected. Using special representations of field variables via sectionally analytic functions, a combined
Dirichlet–Riemann boundary value problem is formulated and solved analytically. Explicit expressions for the
shear stress, the electric field and the crack faces’ sliding displacement are derived. These quantities are also
presented graphically along the corresponding parts of the material interface. The intensity factors for stress
and electric field are determined as well. The dependencies of the mentioned values on the magnitude of the
external electric loading and different ratios of the crack and electrode lengths are presented.

1 Introduction

Due to their high electromechanical coupling effect, piezoelectric materials are widely used in many fields of
modern engineering. Usually, these materials are integrated into complex smart composite structures, which
have become attractive candidates for use in sensors, transducers and actuators. These composite structures are
operated under high electric and mechanical loads. The electric loads are often applied to devices by means of
some compliant foil-shapedmetal electrodes embedded into interfaces. However, because of the brittleness and
the low strength of piezoelectric materials, a high electric field may give rise to debonding and delamination
between the embedded thin electrode and the piezoelectric matrix. Such a phenomenon has been observed
in experiments [2,3]. Therefore, it is very important to study the behavior of piezoelectric composites with
interface defects subjected to the action of mechanical stresses and electrical fields.

Piezoelectric devices with internal electrodes embedded at a bimaterial interface have been actively studied
in recent years [1,12,13,24,26]. One of the central topics was focused on the boundary conditions at the
electrodes. Three different kinds of electrode models have been put forward for the electroelastic analysis of
piezoelectric structures, including the rigid line inclusion model [1], the mechanically compliant model [24],
and the crack-type model [11]. In practice, electrodes generally can be considered as metal foils, which are
more flexible than the surrounding piezoelectric materials. For this reason, the mechanically compliant model
has been widely employed by researchers. Besides, theoretical analysis and numerical results have also shown
that the edge of the electrode is a potential position of high stress and electric field concentrations [14,18].
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It should be noted that the above-cited works are devoted to the electrodes without cracks. In fact, experi-
ments have demonstrated [29] that cracks are formed preferentially at the interface between the electrode and
the piezoelectric matrix. For such cracks, considerable research work on the analysis of electric and elastic
behaviors has been made. For example, Ru [25] derived the exact solutions for a single interface crack situated
on one side of the electrode layer and for a pair of interface cracks situated symmetrically on the opposite sides
of the electrode layer. Häusler et al. [8] and Häusler and Balke [7] studied the generalized two-dimensional
problems of collinear and periodic electrode–ceramic interface cracks in piezoelectric bimaterials and gave
the expressions of the singular fields at the tip of the electrode. A general treatment for generalized two-
dimensional problems in anisotropic piezoelectric bimaterials with interface defects has been developed by
Wang and Shen [28]. In some cases, a finite length electrode can completely exfoliate together with some
part of the material interface, forming a partially conductive interface crack. This problem has been solved
in closed form by Lapusta et al. [10]. An arc-shaped conducting rigid line inclusion located at the interface
between a circular piezoelectric inhomogeneity and an unbounded piezoelectric matrix subjected to remote
uniform anti-plane shear stresses and in-plane electric fields has been considered byWang and Schiavone [27].
Recently, Onopriienko et al. [19] studied the interaction of a conductive crack and an electrode at a piezoelectric
bimaterial interface. Simple analytical expressions for the stress, the electric field, and their intensity factors as
well as for the crack faces displacement jump have been derived. A more detailed review of the investigation
of in-plane and anti-plane crack problems in piezoelectric bimaterials can be found in the review paper by
Govorukha et al. [4].

Thepresentwork is devoted to the analysis of electrode–ceramic interface cracks in piezoelectric bimaterials
under the action of anti-plane mechanical and in-plane electric loadings. The piezoelectric materials located at
the two sides of the finite length interface electrode are assumed to be transversely isotropic and the crack to be
conducting. The crack is formed on one side of an interface electrode. It covers only some part of the electrode,
and therefore, uncracked zones remain either at both or at one of the electrode edges. This leads to a nontrivial
mixed boundary value problem which becomes mathematically much more complicated than the associated
problem for a crack along the whole electrode. To the best of our knowledge, the analytical solutions of this
problem have not been obtained yet. In this paper, such a solution is derived and some immediate consequences
of the obtained solution are discussed.

2 Basic equations

In the absence of body forces and free electric charges, the basic equations for a linear piezoelectric material
presented, for example, by Parton and Kudryavtsev [23] include the constitutive equations

σi j = ci jmnγmn − emi j Em, Di = eimnγmn + εim Em, (1)

the equilibrium equations

σi j, j = 0, Di,i = 0, (2)

and the gradient equations

γi j = 1

2

(
ui, j + u j,i

)
, Ei = −ϕ,i , (3)

where i, j,m, n = 1, 2, 3; σi j , γi j , Di , Ei , ui , and ϕ are the components of stress, strain, electric displacement,
electric field, mechanical displacement, and electric potential, while ci jmn , ei jm , and εi j are the elastic, piezo-
electric, and dielectric constants, respectively; repeated indices imply summation (from 1 to 3). The subscript
comma denotes partial derivative with respect to the rectangular Cartesian coordinates xi (i = 1, 2, 3).

In this paper, we will focus our attention on transversely isotropic piezoelectric materials with hexagonal
symmetry (piezoceramics), which have an isotropic basal plane parallel to the (x1, x2)-plane and a poling
direction parallel to the x3-axis. Materials of this symmetry class have been used for many different industrial
purposes due to their high piezoelectric coupling coefficients.

Let the piezoelectric solid be subject to combined anti-plane mechanical and in-plane electric loads. In this
case, only the out-of-plane displacement u3 and the electric potential ϕ, which are independent of x3, will not
vanish, i.e.,

u1 = u2 = 0, u3 = u3(x1, x2), ϕ = ϕ(x1, x2),
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and the constitutive equations (1) can be simplified as [20]

σ13 = c44
∂u3
∂x1

+ e15
∂ϕ

∂x1
, σ23 = e44

∂u3
∂x2

+ e15
∂ϕ

∂x2
,

D1 = e15
∂u3
∂x1

− ε11
∂ϕ

∂x1
, D2 = e15

∂u3
∂x2

− ε11
∂ϕ

∂x2
. (4)

The equilibrium equations (2) become

c44∇2u3 + e15∇2ϕ = 0,

e15∇2u3 − ε11∇2ϕ = 0, (5)

where ∇2 = ∂2/∂x21 + ∂2/∂x22 is the two-dimensional Laplacian operator. Due to e215 + c44ε11 �= 0, the above
equations can be reduced to two decoupled Laplace equations

∇2u3 = 0, ∇2ϕ = 0. (6)

Equation (6) indicates that out-of-plane displacement u3 and electric potential ϕ are harmonic functions and,
thus [9], they can be expressed as real parts of arbitrary analytic functions f1(z) and f2(z) of a complex variable
z = x1 + i x2 in the way

u3 = 2Re f1(z), ϕ = 2Re f2(z), (7)

where ‘Re’ denotes the real part of an analytic function and i = √−1.
Introducing further the vector-functions

u = [u3, ϕ]
T , f(z) = [ f1(z), f2(z)]

T ,

the relations (7) can be written in the form

u = Af(z) + Āf̄(z̄). (8)

Substituting the representation (8) into (4), we have

t = Bf ′(z) + B̄f̄ ′(z̄), (9)

where t = [σ23, D2]T, f ′(z) = [
f ′
1(z), f ′

2(z)
]T. Here and afterward, the superscript ‘T ’ denotes transposition

of a matrix, the overbar stands for the complex conjugate and prime (′) implies the derivative with respect to
the associated arguments. Here A and B are the 2 × 2 matrices defined by

A =
[
1 0
0 1

]
, B = i

[
c44 e15
e15 −ε11

]
.

The explicit form of Eqs. (8) and (9) is not appropriate for solving the problem for electrode–ceramic interface
crack considered here basedon the extendedStroh formalism.Therefore,we introduce the newvector-functions

v =
[
∂u3
∂x1

, D2

]T
, p = [σ23, E1] ,

and using the presentations (3), (8) and (9), these vector-functions can be written as

v = Mf ′(z) + M̄f̄ ′(z̄), (10)

p = Nf ′(z) + N̄f̄ ′(z̄), (11)

where the matrices M and N are defined by means of the reconstruction of the matrices A and B in the form

M =
[
1 0
ie15 −iε11

]
, N =

[
ic44 ie15
0 −1

]
.
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3 General solution of the basic equations

First, we get more general representations, from which the fracture mechanics problem of this work can be
obtained as a special case. Consider a bimaterial composite, which consists of two piezoelectric half-planes
x2 > 0 and x2 < 0 of different material properties. We assume that the stress and the tangential component
of the electric field are continuous across the whole bimaterial interface. Furthermore, the mechanically and
electrically bonded part of the interface is denoted by L . Then, the boundary conditions at the interface x2 = 0
are

σ
(1)
23 (x1, 0) = σ

(2)
23 (x1, 0), E (1)

1 (x1, 0) = E (2)
1 (x1, 0), for x1 ∈ (−∞, ∞), (12)

γ
(1)
13 (x1, 0) = γ

(2)
13 (x1, 0) D(1)

2 (x1, 0) = D(2)
2 (x1, 0), for x1 ∈ L , (13)

where the subscripts 1 and 2 refer to the materials in x2 > 0 and x2 < 0, respectively.
To solve this problem, we use the representations (10) and (11) for the upper (k = 1) and lower (k = 2)

half-planes, which can be written in the form

v(k) = M(k)f ′(k)(z) + M̄(k)f̄ ′(k)(z̄), (14)

p(k) = N(k)f ′(k)(z) + N̄(k)f̄ ′(k)(z̄). (15)

According to the continuity conditions (12) and the relations (15), we get

N(1)f ′(1)(x1 + i0) + N̄(1)f̄ ′(1)(x1 + i0) = N(2)f ′(2)(x1 − i0) + N̄(2)f̄ ′(2)(x1 − i0),

which can be rewritten as

N(1)f ′(1)(x1 + i0) − N̄(2) f̄ ′(2)(x1 + i0) = N(2)f ′(2)(x1 − i0) − N̄(1)f̄ ′(1)(x1 − i0), x1 ∈ (−∞,∞). (16)

The left-hand side of Eq. (16) is the boundary value of a function being analytic in the upper half-plane, and
the right-hand side is the boundary value of another function being analytic in the lower half-plane. Hence,
both functions are equal to a function, defined as

J(z) =
{
N(1)f ′(1)(z) − N̄(2)f̄ ′(2)(z), x2 > 0,

N(2)f ′(2)(z) − N̄(1)f̄ ′(1)(z), x2 < 0,
(17)

which is analytic in the whole plane.
Assuming that the stress and electric field are bounded at infinity, it follows that J(∞) = J∞, where J∞

is a constant vector. But according to Liouville’s theorem, this means that J(z) = J∞ holds true in the whole
plane. Thus, from Eq. (17), it follows that

N(1)f ′(1)(z) − N̄(2)f̄ ′(2)(z) = J∞, x2 > 0,

N(2)f ′(2)(z) − N̄(1)f̄ ′(1)(z) = J∞, x2 < 0. (18)

Since f (k)(z)(k = 1, 2) are arbitrary vector-functions, one can choose J∞ = [0, 0]T. Taking into account that
the matrices in Eq. (18) are nonsingular, one obtains

f̄ ′(2)(z) =
(
N̄(2)

)−1
N(1)f ′(1)(z), x2 > 0,

f ′(2)(z) =
(
N(2)

)−1
N̄(1)f̄ ′(1)(z), x2 < 0. (19)

Next consider the expressions for the derivative of the mechanical displacement jump and the electrical
displacement jump

〈v(x1)〉 = v(1)(x1 + i0) − v(2)(x1 − i0)

over the bimaterial interface, which, in view of (14) and (19), takes the form

〈v(x1)〉 = Df ′(1)(x1 + i0) + D̄f̄ ′(1)(x1 − i0),
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where D = M(1) − M̄(2)
(
N̄(2)

)−1
N(1). Here and afterward the brackets 〈. . .〉 denote the jump of the corre-

sponding function over the bimaterial interface.
From the condition (13), we have 〈v(x1)〉 = 0 for x1 ∈ L or

Df ′(1)(x1 + i0) = −D̄f̄ ′(1)(x1 − i0), x1 ∈ L .

We can introduce the vector-function w(z) = [w1(z), w2(z)]T by the formula

w(z) =
{
Df ′(1)(z), x2 > 0,

−D̄f̄ ′(1)(z), x2 < 0,

which is analytic in the whole plane cut along (−∞,∞)\L and tends to a constant as |z| → ∞. Then the field
variables at the bimaterial interface can be expressed via the boundary values of the function w(z) in such a
way that

〈v(x1)〉 = w+(x1) − w−(x1), (20)

p(x1, 0) = Gw+(x1) − Ḡw−(x1), (21)

where G = N(1) (D)−1 and the superscripts ‘+’ and ‘−’ indicate the limit values at the interface takes from
the upper and the lower half-planes, respectively.

In this paper, as defined before, we consider transversely isotropic piezoelectric materials poled in the
x3-direction. For this case, the matrix G has the form

G =
[
ig11 g12
g21 ig22

]
,

where all gkl (k, l = 1, 2) are real. Furthermore, taking into account the form of the matrix G, the relation
(21) can be written in the expanded form

σ23(x1, 0) = ig11w
+
1 (x1) + g12w

+
2 (x1) + ig11w

−
1 (x1) − g12w

−
2 (x1),

E1(x1, 0) = g21w
+
1 (x1) + ig22w

+
2 (x1) − g21w

−
1 (x1) + ig22w

−
2 (x1). (22)

Introducing the new functions

Fk(z) = w2(z) + iskw1(z), (23)

having the same properties as w(z), and combining the first and second equations (22) one arrives at the
representations

σ23(x1, 0) − imk E1(x1, 0) = tk
[
F+
k (x1) + γk F

−
k (x1)

]
, (24)

where

sk = g11 − mkg21
tk

, γk = −g12 − mkg22
tk

, tk = g12 + mkg22, m1,2 = ∓
√

−g11g12
g21g22

, k = 1, 2.

On the other hand, according to (23)

F+
k (x1) − F−

k (x1) = w+
2 (x1) − w−

2 (x1) + isk
[
w+
1 (x1) − w−

1 (x1)
]
,

then using (20), one gets

〈D2(x1)〉 + isk
〈
u′
3(x1)

〉 = F+
k (x1) − F−

k (x1). (25)

Numerical analysis shows that the constants sk , γk , tk , mk are real, and besides s1,2 = −m1,2, γ2 = 1/γ1 hold
true.

The expressions (24) and (25) play an important role in the following analysis because by means of these
expressions the problems of linear relationship for various mixed boundary conditions at the interface can be
formulated and successfully solved.
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Fig. 1 The electrode–ceramic interface crack under the action of anti-plane mechanical and in-plane electric loadings

4 Problem formulation

We now focus on the fracture mechanical boundary value problem motivated in the introduction. Consider a
finite internal electrode b1 ≤ x1 ≤ b2 located at the interface x2 = 0 between two dissimilar piezoelectric
half-planes x2 > 0 and x2 < 0, as shown in Fig. 1. The upper and lower components of the bimaterial are
piezoceramics with poling direction parallel to the x3-axis and material properties c(k)

44 , e
(k)
15 , and ε

(k)
11 , where

the mentioned values are the stiffness, piezoelectric, and dielectric constants, respectively (k = 1 stands for
the upper half-plane and k = 2 for the lower one). Since the electrode is commonly more flexible than the
piezoelectric material, its mechanical properties are neglected. Thus, the electrode is represented by its elec-
trical properties, only. We suppose that outside the electrode the half-planes are mechanically and electrically
bonded along the interface.

An anti-planemechanical loading σ∞
23 and an in-plane electric loading E∞

1 are applied at infinity. This load-
ing results in an anti-plane mechanical and in-plane electric state for which the relations (24) and (25) are valid.

It is assumed that this bimaterial compound contains a single electrode–ceramic interface crack a1 ≤ x1 ≤
a2 (b1 ≤ a1, a2 ≤ b2), situated on one side of the electrode and that there is no traction and free charge on the
crack surface. The crack is supposed to be electrically conducting.

The electrode–ceramic crack is denoted by La = (a1, a2), and the electrode areas without crack by
Lb = (b1, a1) ∪ (a2, b2), while the bonded parts of the interface are denoted by L = (−∞, b1) ∪ (b2, ∞).
Then the boundary conditions at the interface x2 = 0 can be written as

σ+
23 = σ−

23 = 0, E+
1 = E−

1 = 0, x1 ∈ La, (26)

〈σ23〉 = 0, 〈γ13〉 = 0, E+
1 = E−

1 = 0, x1 ∈ Lb, (27)

〈γ13〉 = 0, 〈σ23〉 = 0, 〈E1〉 = 0, 〈D2〉 = 0, x1 ∈ L . (28)

The field variables at the bimaterial interface can be represented by means of the expressions (24) and (25).
Due to the method by which expressions are constructed, they automatically satisfy the boundary conditions
〈σ23〉 = 0 and 〈E1〉 = 0 for thewhole interface and, accordingly, satisfy the first and fourth interface conditions
(28) for x1 ∈ L . To satisfy the remaining boundary conditions (26) and (27), one gets with the use of (24) and
(25) the equations

F+
k (x1) + γk F

−
k (x1) = 0, x1 ∈ La, (29)

Im
[
F+
k (x1) + γk F

−
k (x1)

] = 0, Im
[
F+
k (x1) − F−

k (x1)
] = 0, x1 ∈ Lb, (30)

where the functions Fk(z) are analytic in the whole plane cut along (b1, b2) of the interface and ‘Im’ denotes
the imaginary part of an analytic function. The simultaneous satisfaction of both equalities (30) is possible
only if the equation

ImF±
k (x1) = 0, x1 ∈ Lb. (31)
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is valid.
Taking into account that for x1 /∈ (−b1, b2) the relation F+

k (x1) = F−
k (x1) = Fk(x1) holds, the conditions

at infinity for the functions Fk(z) by using of Eq. (24) and the prescribed remote electromechanical loads can
be written as

Fk(z)|z→∞ = σ∞
23 − imk E∞

1

tk(1 + γk)
. (32)

5 Solution of the problem

For each k = 1, 2, the relations (29) and (31) are a homogeneous combined Dirichlet–Riemann problem of
linear relationship. Considering that γ2 = 1/γ1, the solution of the problem in question for k = 2 can be
obtained from the associated solution for k = 1. Therefore, our attention will now be focused only on the case
k = 1. The general solution of (29) and (31) can be constructed by the method from Nakhmein and Nuller
[17] and Govorukha et al. [5] and are presented as

F1(z) = X (z) [P(z) + i Q(z)Y (z)] , (33)

where

X (z) = eiφ(z)

(z − d)
√

(z − a1)(z − a2)
, Y (z) =

√
(z − a1)(z − a2)

(z − b1)(z − b2)
,

φ(z) = −Z(z)

⎛

⎜
⎝ε1

a2∫

a1

dt

Z(t)(t − z)
+ i

a1∫

b1

h1(t)dt

Z+(t)(t − z)
+ i

b2∫

a2

h2(t)dt

Z+(t)(t − z)

⎞

⎟
⎠ , ε1 = ln γ1

2π
,

Z(z) = √
(z − b1)(z − b2)(z − a1)(z − a2), h1(x1) = n∗, h2(x1) =

{
1, x1 ∈ (a2, d),

0, x1 ∈ (d, b2),

n∗ is an integer number, and d ∈ (a2, b2) is an unknown pole of the function X (z).
The integrals in the expression for the function φ(z) can be represented via elliptic integrals as [6]

φ(z) = −2√
(b2 − a1)(a2 − b1)

{

ε1

√
(z − a2)(z − b2)

(z − a1)(z − b1)
φ1(z)

+ n∗
√

(z − a1)(z − a2)

(z − b1)(z − b2)
φ2(z) −

√
(z − b1)(z − b2)

(z − a1)(z − a2)
φ3(z)

}

,

where

μ = arcsin

√
(b2 − a1)(d − a2)

(b2 − a2)(d − a1)
, (34)

and

φ1(z) = (a1 − b1)	(p1, q) + (z − a1)K (q), p1 = p∗
1
z − b1
z − a1

, p∗
1 = a2 − a1

a2 − b1
,

φ2(z) = (b1 − b2)	(p2, r) + (z − b1)K (r), p2 = p∗
2
z − b2
z − b1

, p∗
2 = b1 − a1

b2 − a1
,

φ3(z) = (a2 − a1)	(μ, p3, r) + (z − a2)F(μ, r), p3 = p∗
3
z − a1
z − a2

, p∗
3 = b2 − a2

b2 − a1
,

q =
√

(a2 − a1)(b2 − b1)

(b2 − a1)(a2 − b1)
, r =

√
(b2 − a2)(a1 − b1)

(b2 − a1)(a2 − b1)
.
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Here, F(μ, r) and 	(μ, p, r) are incomplete elliptic integrals of the first and third kind, while K (r) and
	(p, r) are complete elliptic integrals of the first and third kind.

The integer n∗ and the pole d of the function X (z) can be found from the finiteness conditions at infinity
of the function φ(z), which has the form [15]

ε1

a2∫

a1

dt

Z(t)
+ i

a1∫

b1

h1(t)dt

Z+(t)
+ i

b2∫

a2

h2(t)dt

Z+(t)
= 0. (35)

Expressing the integrals in Eq. (35) via elliptic integrals [6], we can rewrite this equation as

F(μ, r) = ε1K (q) + n∗K (r). (36)

Since the elliptical integral F(μ, r) is positive and F(μ, r) < K (r), the last equation leads for n∗ to the
condition

−ε1
K (q)

K (r)
< n∗ < 1 − ε1

K (q)

K (r)
.

Apparently, this condition uniquely determines the ratio n∗. Solving Eq. (36) with respect to μ and (34) with
respect to d , one gets

d = a1(b2 − a2)sn2(ω, r) − a2(b2 − a1)

(b2 − a2)sn2(ω, r) − b2 + a1
, (37)

where sn(ω, r) is the Jacobi elliptic function and ω = ε1K (q) + n∗K (r).
The functions P(z) and Q(z), appearing in the solution (33), have the form

P(z) = C0 + C1z + C2z
2, Q(z) = D0 + D1z + D2z

2, (38)

where the coefficientsCς , Dς (ς = 0, 1, 2) are real constants. To determine the constantsC1,C2, D1, D2 from
the conditions at infinity (32) for the function F1(z), we use the expansion

Z(z)|z→∞ = z2
[
1 + ξ1/z + O(z−2)

]
, Y (z)|z→∞ = 1 + η1/z + O(z−2),

φ(z)|z→∞ = α0 + α1/z + O(z−2), X (z)|z→∞ = z−2eiα0
[
1 + ρ1/z + O(z−2)

]
,

of the functions at infinity, where

ξ1 = −1

2
(a1 + a2 + b1 + b2) , η1 = 1

2
(b2 + b1 − a2 − a1) , α0 = A2, α1 = ξ1A2 + A3,

ρ1 = ν1 + iα1, ν1 = a1 + a2
2

+ d,

Aζ = ε1

a2∫

a1

tζ−1dt

Z(t)
+ i

a1∫

b1

tζ−1h1(t)dt

Z+(t)
+ i

b2∫

a2

tζ−1h2(t)dt

Z+(t)
, ζ = 2, 3.

Substituting the above expressions into (33), we get

F1(z)|z→∞ = eiα0
{
C2 + i D2 + 1

z
[C1 + i (D1 + η1D2) + ρ1 (C2 + i D2)]

}
+ O(z−2). (39)

Comparing the right-hand sides of (32) and (39), we get the expressions

C2 = σ∞
23 cosα0 − m1E∞

1 sin α0

t1(1 + γ1)
, D2 = −σ∞

23 sin α0 + m1E∞
1 cosα0

t1(1 + γ1)
,

and

C1 = α1D2 − ν1C2, D1 = − (η1 + ν1) D2 − α1C2.

for the coefficients. The remaining coefficients are determined from the condition of the absence of a pole at
the point d , i.e.,
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P(d) + i Q(d)Y−(d) = 0, P ′(d) + i Q′(d)Y−(d) + i Q(d)Y ′−(d) = 0,

which can be written as a system

C0 + C1d + C2d
2 − χD0 − χD1d − χD2d

2 = 0,

C1 + 2C2d − χD1 − 2χD2d − χ∗D0 − χ∗D1d − χ∗D2d
2 = 0

of linear algebraic equations where

χ∗ = 1

2χ

[
(2d − a1 − a2)(d − b1)(b2 − d) + (2d − b1 − b2)(d − a1)(d − a2)

(d − b1)2(b2 − d)2

]
,

χ =
√

(d − a1)(d − a2)

(d − b1)(b2 − d)
.

Solving this system, we get

C0 = −C1

(
d − χ

χ∗

)
− C2d

(
d − 2χ

χ∗

)
− χ2

χ∗ (D1 + 2D2d) ,

D0 = 1

χ∗ (C1 + 2C2d) − D1

(
d + χ

χ∗

)
− D2d

(
d + 2χ

χ∗

)
.

Using the solution (33) together with the formulas (24) and (25), one gets

σ23(x1, 0) − im1E1(x1, 0) = t1(1 + γ1)

x1 − d

{
P(x1) cosφ(x1)√
(x1 − a1)(x1 − a2)

− Q(x1) sin φ(x1)√
(x1 − b1)(x1 − b2)

+ i

[
Q(x1) cosφ(x1)√
(x1 − b1)(x1 − b2)

+ P(x1) sin φ(x1)√
(x1 − a1)(x1 − a2)

]}
, x1 > b2, (40)

〈D2(x1)〉 + is1
〈
u′
3(x1)

〉 = 1 + γ1√
γ1(x1 − d)

{
Q(x1) cosφ∗(x1)√
(x1 − b1)(b2 − x1)

+ P(x1) sin φ∗(x1)√
(x1 − a1)(a2 − x1)

+ i

[
Q(x1) sin φ∗(x1)√
(x1 − b1)(b2 − x1)

− P(x1) cosφ∗(x1)√
(x1 − a1)(a2 − x1)

]}
, x1 ∈ (a1, a2),

(41)

σ23(x1, 0) = 2t1
√

γ1 cos [πh2(x1)]

x1 − d

⎧
⎨

⎩

P(x1) cosh
[
φ̃(x1) − πε1

]

√
(x1 − a1)(x1 − a2)

+
Q(x1) sinh

[
φ̃(x1) − πε1

]

√
(x1 − b1)(b2 − x1)

⎫
⎬

⎭
, x1 ∈ (a2, b2), (42)

〈D2(x1)〉 = 2 cos [πh2(x1)]

x1 − d

{
P(x1) sinh φ̃(x1)√
(x1 − a1)(x1 − a2)

+ Q(x1) cosh φ̃(x1)√
(x1 − b1)(b2 − x1)

}

, x1 ∈ (a2, b2), (43)

where

φ∗(x1) = −Z(x1)

⎡

⎢
⎣ε1

a2∫

a1

dt

Z(t)(t − x1)
+ i

a1∫

b1

h1(t)dt

Z+(t)(t − x1)
+ i

b2∫

a2

h2(t)dt

Z+(t)(t − x1)

⎤

⎥
⎦ ,

φ̃(x1) = − i Z+(x1)

⎡

⎢
⎣ε1

a2∫

a1

dt

Z(t)(t − x1)
+ i

a1∫

b1

h1(t)dt

Z+(t)(t − x1)
+ i

b2∫

a2

h2(t)dt

Z+(t)(t − x1)

⎤

⎥
⎦ .
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Analysis of the formulas (40) and (42) shows that the stress σ23(x1, 0) is singular for x1 → a2 + 0 and
E1(x1, 0) is singular for x1 → b2 + 0. In all mentioned cases, inverse square root singularities are found.
Thus, the intensity factors for stress and electric field can be defined as

Kσ = lim
x1→a2+0

√
2π(x1 − a2)σ23(x1, 0),

KE = lim
x1→b2+0

√
2π(x1 − b2)E1(x1, 0). (44)

Applying the formulas of Muskhelisvili [16] to Cauchy type integrals, which are expressed via the functions
φ̃(x1), φ∗(x1) and φ(x1) in the vicinity of singular points, one arrives at

φ(b2) = 0, φ∗(a2) = 0, φ̃(a2) = πε1.

Substituting these formulas into (40) and (42) and considering the obtained expressions in the vicinity of the
points a2 and b2, we get

Kσ =
√

8πγ1

a2 − a1

t1P(a2)

d − a2
, KE =

√
2π

b2 − b1

t1(1 + γ1)Q(b2)

m1(d − b2)
. (45)

To confirm the validity of the obtained solution, let us suppose that the electrode areas without crack
are absent and only the electrode–ceramic interface crack is situated along b1 ≤ x1 ≤ b2. In this case, the
homogeneous Hilbert problem

F+
1 (x1) + γ1F

−
1 (x1) = 0 for b1 ≤ x1 ≤ b2 (46)

follows from (24), (26) and the conditions at infinity (32) are valid.
This problem is relatively simple and its solution can be easily found referring to Muskhelisvili [15] in the

form

F1(z) = σ∞
23 − im1E∞

1

t1(1 + γ1)
(z − b1)

−1/2+iε1(z − b2)
−1/2−iε1

[
z − iε1(b2 − b1) − b1 + b2

2

]
. (47)

Substituting (47) into (24), we get the expressions

σ23(x1, 0) − im1E1(x1, 0)

= σ∞
23 − im1E∞

1√
(x1 − b1)(x1 − b2)

(
x1 − iε1(b2 − b1) − b1 + b2

2

)[
x1 − b1
x1 − b2

]iε1
(48)

for the stress and electric field at the bonded part x1 > b2 of the bimaterial interface.
Considering the formula (40) for a1 → b1 and a2 → b2, we arrive exactly at Eq. (48). This fact confirms

the correctness of the solution (33) and, moreover, it shows that the presence of the intact electrode areas
(b1, a1) ∪ (a2, b2) transforms the oscillating singularity at the tips of an interface crack into two square root
singularities at the points ak and bk (k = 1, 2).

6 Numerical results and analysis

The numerical analysis has been performed for a bimaterial composed of commercially available piezoelectric
ceramics PZT-4 (the upper material) and PZT-5H (the lower one). The material properties of these materials
are taken from Park and Sun [22] and Pak [21], respectively, and σ∞

23 = 1 MPa, a2 = 10 mm are chosen
for all calculations presented here. The analytical solution is obtained for any positions of the points a1 and
a2. However, for the sake of clarity of the numerical illustrations it is assumed in this section that the centers
of the electrode and the crack coincide with each other. Numerical results are presented for different ratios
ω = (b2 − b1)/(a2 − a1). The main attention of the following numerical analysis will be devoted to the
influence of the external electrical loading on the stress and electric field intensity factors as well as the spatial
variations of the field variables at the bimaterial interface.

At the beginning, the variations of the crack faces’ sliding displacement, i.e., the jump 〈u3(x1)〉 along the
crack region (a1, a2), are displayed in Figs. 2a, b. Here and afterward the lines 1, 2 and 3 correspond to E∞

1 = 0,
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(a) (b)

Fig. 2 The variation of the normalized crack faces sliding displacement jump along the crack region for ω = 1.1 (a) and ω = 2.0
(b)

Table 1 The variations of stress and electric field intensity factors for different intensities of the external electric field

E∞
1 [V/m] Kσ [Pa

√
m] KE [V/

√
m]

ω = 1.1 ω = 2.0 ω = 1.1 ω = 2.0

−8.8395 × 102 1.7726 × 105 1.7726 × 105 ≈ 0 −1.7993 × 102

−5 × 102 1.7722 × 105 1.7725 × 105 71.365 −83.690
−1.6612 × 102 1.7719 × 105 1.7724 × 105 1.3342 × 102 ≈ 0
0 1.7717 × 105 1.7723 × 105 1.6430 × 102 41.641
3 × 104 1.7439 × 105 1.7628 × 105 5.7404 × 103 7.5615 × 103

1.9076 × 106 ≈ 0 1.1670 × 105 3.5473 × 105 4.7820 × 105

3 × 106 −1.0146 × 105 8.2031 × 104 5.5777 × 105 7.5203 × 105

5.5849 × 106 −3.4154 × 105 ≈ 0 1.0382 × 106 1.3940 × 106

E∞
1 = 106 V/m, and E∞

1 = 2 × 106 V/m, respectively. The obtained results confirm an essential influence
of electrical loading upon the crack faces sliding displacement jump 〈u3(x1)〉. The asymmetry of the graphs
(lines 2, 3) appears because of nonzero electric field. The maximum of the crack faces’ sliding displacement
jump increases as the electric field increases. Besides, under the same remote electrical loading, the amplitude
of the crack faces’ sliding displacement jump becomes higher as the ratio of ω decreases, i.e., the coefficient of
the electrode and crack lengths decreases. But it should be noted that for a relatively small value of electrical
loading, this dependence is rather small. It is also worth to mention that the curve 3 in Fig. 2a corresponds to the
special combination of electromechanical loading caused the smooth crack closing (see line 6 of the Table 1
also). Therefore this curve has no vertical tangent and differs with respect to this feature from the other curves.

The distribution of the shear stress σ23(x1, 0) along the bonded part x1 ∈ (a2, b2) of the electrode zone for
different values of the external electrical loading are shown in Figs. 3a, b. It is seen that for a relatively small
value of electrical loading, the values of the shear stress σ23(x1, 0) are positive in most parts of the interval
(a2, b2) and are negative only near the point b2, i.e., at the edge of the electrode. A decrease in the external
electric field leads to an increase in the zone of negative stress field. This behavior can be described by the stress
intensity factor Kσ , defined by Eq. (45). The dashed lines in these figures correspond to the case of Kσ = 0. In
this special case, the crack closes smoothly at the point a2 and the stress σ23(x1, 0) tends to zero at this point.

Figure 4a, b shows the shear stress σ23(x1, 0) variations at the electrode continuation x1 > b2, i.e., in
the bonded interface beyond the electrode. It is observed clearly from this figure that the value of σ23(x1, 0)
decreases with the increase in magnitude of the applied electrical loading. Thus, the analysis of Figs. 3 and
4 confirms the analytical conclusion that the shear stresses σ23(x1, 0) tend to infinity at the electrode tip for
x1 → b2 − 0 and remain always limited for x1 → b2 + 0. Therefore, this stress is not continuous at the
electrode tip and tends to its nominal value for all x1 much larger than the electrode length.
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(a) (b)

Fig. 3 Shear stress variation along the bonded electrode zone for ω = 1.1 (a) and ω = 2.0 (b)

(a) (b)

Fig. 4 Behavior of the shear stress at the electrode continuation for ω = 1.1 (a) and ω = 2.0 (b)

The variations of the electric field E1(x1, 0) at the electrode continuation x1 > b2 are shown in Fig. 5. It is
seen from this figure that E1(x1, 0) is almost equal to 0 for E∞

1 = 0, but it becomes rather large for a nonzero
external electric field. In particular, E1(x1, 0) is singular at the right neighborhood of the point b2. Therefore,
it grows very fast for x1 tending to this point and it promptly decreases at a distance from it. However, the
dependence of the electric field at the electrode continuation on the ratio of ω is negligibly small.

The variations of the stress intensity factor Kσ and of the electric field intensity factor KE are shown in
Table 1 for different values of ω and E∞

1 . It can be seen that the dependence of both Kσ and KE on the
electric field is rather essential. For each ω, the growing electrical loading E∞

1 leads to decrease in the stress
intensity factor Kσ , eventually assuming vanishing values. This means that tuning of E∞

1 to an appropriate
value decreases the danger of the crack development. On the other hand, the electric field intensity factor KE
is approximately proportional to the external electric field for large values of this field. For smaller absolute
values of E∞

1 , the electric field intensity factor KE is mostly defined by the external stress. Moreover, very
small negative values of E∞

1 reduce the intensity factor KE to zero.

7 Conclusions

The linear electroelastic problem for a piezoelectric bimaterial composite with an electrode–ceramic interface
crack under the action of anti-plane mechanical and in-plane electric loadings has been analyzed. Due to a
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Fig. 5 Variation of the electric field at the electrode continuation for ω = 1.1 (solid lines) and ω = 2.0 (dashed lines with
symbols)

special transformation of conventional representations (8), (9) of the field variables via analytical functions,
the new representations (24), (25) convenient for the considered problem solution are found. On the basis of
these representations, the problem is reduced to the combined Dirichlet–Riemann boundary value problem
(29), (31) with the conditions (32) at infinity, and its exact analytical solution is derived. Due to the presence
of an electrode at the crack continuation, the oscillating singularity at the tips of an interface crack transforms
into two conventional square root singularities at the crack and the electrode tips for shear stress and electric
field, respectively. Analytical expressions (40)–(43) for the field variables along the interface are presented in
an explicit form. Furthermore, the stress and the electric field intensity factors (44) have been determined. The
correctness of the obtained solution is confirmed by its comparison with the limiting case with the well-known
solution for a single electrically conducting interface crack. The crack faces’ sliding displacement, the electric
field and the shear stress are calculated along the corresponding parts of the material interface and presented
in a graphical form in Figs. 2, 3, 4 and 5 for different values of the external electric loading and different
relations between the crack and electrode lengths. Furthermore, the stress and electric field intensity factors
are presented in Table 1. The present investigation shows that an influence of the relation between the crack
and electrode lengths on the field variables is almost absent for a relatively small value of electrical loading,
but it becomes rather significant in the opposite case. The maximum of the crack face sliding displacement
jump increases as the electric field increases. Besides, under the same remote electrical loading, the amplitude
of the crack face sliding displacement jump becomes higher as the coefficient of the electrode and crack length
decreases. Furthermore, the growth of the external electric field leads to a decrease in the stress intensity factor
at the crack tip and to an increase in the electric field intensity factor at the electrode tip.
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