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Abstract. The work considers the  multiprocessors technologies  of modeling  for Monte 

Carlo  tasks. It is shown that  only application of the modern super productive systems permitted  

the  new way to realize  the mechanism of  corresponding  partitioned computations. The  

calculating schemes  that supply to provide the increase of productivity and  calculations' speed  

effectiveness are  shown. In this  article the modified algorithm of parallel calculations is offered 

based on the Monte Carlo method.  Here every calculator has its  own random generator of 

numbers. Thus intermediate calculations come true independently on the different, separately taken 

blades of cluster , "calculators". The results are already processed on some separately taken master 

-blades ( "analyzer"). This allows to get rid from the necessary presence of router-communicator 

between the random generator of numbers and "calculator". Obviously, that such decision allows to 

accelerate the process of calculations. It is shown that the parallel algorithms of the  Monte Carlo 

method are stable to any  input data and  have the  maximal parallel form and, thus, minimal 

possible time of realization using the parallel computing devices. If it is possible to appoint one 

processor to one knot of calculation. Thus the  realization of calculations becomes  possible in all 

knots of net area in parallel and simultaneously. 
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Introduction. Among the variety of calculating methods in the modern mathematical 

solutions  it is possible to put attention on the methods such as Monte Carlo [1 - 4]. This name 

unites the group of the calculative methods based on receiving the great amount of the stochastic 

process  realizations. This process   demands  that its probability  could correlate with the analogical 

values of the solved problem. Monte Carlo methods are widely used in areas of physics, 

mathematics ,economics, optimization, management etc. The national works based on the Monte 

Carlo methods appeared in 1955-1956. Since that time a lot of the scientific works describing the 

above mentioned method were written [5 – 10]. Even the  superficial glance shows the efficiency  

of the  Monte Carlo method for solving of applied tasks in the different science and techniques 

areas. Thus now these methods are applied  for solving for some classes of the differential equations 

in the partial  derivatives, integral equations , problems of the eigen-values and linear algebraic 

equations . The important feature of the Monte Carlo method is its experimental characteristics. We 

will call this name the procedure including the use of ways of statistic sampling  for the 

approximate solving of the mathematical and physics  problems. 

Among all methods the Monte Carlo  had and has the influence on the development of the 

methods of applied mathematics, e.g. on the development of the methods of  numerical integrating. 

It also effectively coincides with other calculative methods  and makes addition for them. It is 

widely used especially for the tasks having the theoretical-probable  description because of the 

definite simplification of the solving. 

Monte Carlo method is widely used for its simplicity and universality. Low approximation is 

the essential shortcoming of the method but in this work we will describe its modifications which 

provide the high order of the convergence; which is possible with the help of  special assumptions . 



Though the calculating procedure becomes more complicated. Monte Carlo approximation is the 

approximation based on probability. It is known that the approximate methods are often used for 

solving the practical tasks. 

At least we admit that solution accuracy of this method  depends on the quality of the 

generator of the random values that describes the analyzed process and also on the productivity of 

the so called calculator. Today the tact frequency of the modern processors is higher than Gigabytes  

and the volume of the RAM of the PC is also  very large. Taking in account that the definite class of 

tasks will be developed on the personal calculating cluster  the calculator productivity is not a 

problem for solving for calculating algorithms used  to solve multi dimensional tasks. The practical 

example of the mechanism for applying this method and some special features of its realizing  will 

be considered for the typical thermo -physical tasks. 

Specialty of realization of the parallel calculations with the Monte Carlo Method.  
Among the other numerical methods the main role plays the Monte Carlo Method . We have 

to point that this method helps to get the closest solution of the task in one fixed point without 

knowing the solution for other points of the grid. This differs the  Monte Carlo Method especially 

for solving the Dirichlet problem from other well-known ways. 

The simplified scheme is shown on the Fig.1. 

 

 
 

            Figure 1 ‒  Scheme of calculations with the Monte Carlo Method  

 

Application of this method gives the possibility to review the idea of making nonparallel 

calculations and using the cluster technologies. Intermediate results may be obtained independently 

on the different levels and the final results should be arranged on any separate master -blade or 

analyzer. Fig.2 shows the algorithm of parallel calculations. 

 
                                            Figure 2 ‒ Scheme of parallel calculations 
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According to this scheme one generator of the random numbers outputs one random value to 

each "calculator". Information is permanently transferred via latent  channels. So the productivity 

will be low as well as the data speed. Experience of operating of the calculating cluster for such 

schemes made it available to perfect the scheme on the Fig.2. 

The Fig.3 shows the modified algorithm of calculations with Monte Carlo Method. Every 

user has its own generator of random values. This fact allows to escape the  presence of the router 

communicator. This decision definitely accelerates the calculating process . The productivity may 

be evaluated experimentally. 

 

 
 

Figure 3 ‒  Modified algorithm of parallel calculations based on Monte Carlo Method 

 

Thus Monte Carlo Method based algorithms  are  the stable relating to any input data, have 

the maximal parallel form and the minimal time for realization of calculations. 

 

Investigation of efficiency of the cluster system simulation of tasks by the Monte Carlo 

Method 

Analysis  of the problem of search and solution for boundary value problems 

Boundary problems and problems with initial conditions for linear differential equations  are 

the one of the most interesting  areas of using the Monte Carlo Method .The connection between 

two types of these problems is known for long time (5-9). But only the computers' appearance gave 

the possibility of using this connection for finding the results of this problem.   

To clear the main idea of the method we consider the Dirichlet problem for Laplace 

equation.We have the definite G-area on which boundary the function f(Q) is defined. We have to 

find the function U(P) that satisfies the Laplace equation : 

 

                     ∆U = 0,                                                                         (1) 

 

on boundary of area P accepts values: 
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Generally this problem is  brought  to a finite-difference scheme. G-area is covered by the  

square grid nodes. We look for  values of the function U(Р)  from the following system. 
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Symbols {P1, P2, P3, P4} mean four nodes next to the internal node P: they are arranged  

inside  the G-area or on its bound. 

We consider the theoretical probable scheme which is connected with the problem. Imagine 

the participle that has to move between the grid nodes with integer coordinates (i, j) on the area: 
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Let's say that the grid of Sη  consists of internal and boundary nodes in which boundary 

conditions of the first kind are set. Boundary nodes represent a set of the linear points of Mpq(xp,yq) 

which approximate the curvilinear  Г boundary of  the area G which approximate the curvilinear  

boundary of  the area G to with accuracy  η.The particle  M realizes the uniform accidental 

movement between nodes of the grid [3]. In particular, being in the internal node Mi0,j0 of a grid  Sη, 

this particle for one transition  with identical probability equal to ¼ can move to one of adjacent 

nodes. In particular  in Mi-1,j(xi-η ,yj), one  step back,  in Mi+1,j(xi+η , yj) one step to the right, in  Mi,j-

1(xi , yj - η)  -one a step down or  Mi,j+1(xi , yj +η) - one step up. Each such transition is absolutely 

accidental and doesn't depend on the position of a particle and its previous relocation. Let's allow 

that relocation of М will end as soon as it  reaches the  boundary Гη. In this case Гη is "the absorbing 

screen". It is possible to prove [5] that М relocation through a finite number of steps will finish on 

this boundary. 

If the particle of М began the relocation with the fixed point of Mi0,j0  on  the  grid Sη  that 

can be written as: 

Mi0,j0, Mi1,j1, … , MiS,jS , 

аnd   

                                                  )1 - S,,1,0(  kГM
kk ji  . 

Here expression ГM
kk ji ∈   displays a particle path in case of quantity of steps equal to S. 

This value is accepted  to be called "history of relocation". 

Uniform accidental relocation of a particle can be organized by means of uniformly 

distributed sequence of random numbers [5, 7 –  10] which are equal to: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

For this purpose it is enough to carry out random check from numbers (0 –  9), adhering to 

the instruction shown in the table 1. 

Table 1. Determination of the particle step depending on a random number 

 

Rando

m number 

Determination 

0 or 4 ∆хi = η  (step right) 

1 or 5 ∆YY = η (step up)   

2 or 6 
∆∆хi = – η (step 

left) 

3  or 7 
∆∆YY = – η (step 

down) 

 



Random numbers are taken from the ready tables or turn out by  the pseudorandom number 

generator [7]. The last  method became popular as it doesn't allow to overload  the system memory. 

The particle which has begun relocation from a point  Mi0,j0 after the first step will occur in one of 

the nodes  

                                       I. Mi,j, Mi-1,j, … , ; 

                                      II. Mi,j, Mi+1,j, … , ; 

                                      III. Mi,j, Mi,j-1, … , ; 

                                      IV.  Mi,j, Mi,j+1, … . 

 

By the formula of full probability we have 
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Having multiplied two members of equation (4) on boundary values γpq and having 

summarized all possible p  and q  values, we will receive. 

 

)(
4

1
1,1-,1,1,-   jijijijiij  .                                                  (5) 

 

Values ij allow the experimental determination, for this purpose it is necessary to replace 

mathematical expectation by empirical. Then expression will look as: 
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The formula (6) gives a statistical assessment of values U i, j and can be used as the best 

approximation to the solution of the  Dirichlet problem. 

 

Example 1. To find  value U(2, 2) with the application of the Monte Carlo method  where 

,0),(  yxU  in the area 

G {0 ≤ x ≤ 4; 0 ≤ y ≤ 4},                                   (7) 

 

and conditions are: 
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Solution. For the square G with the boundary Г we will build the square grid S with the step 

η =1. Coming from the initial position (2,2) the movement finishes on the boundary  Г  in the area 

Gк, at the given conditions (8) (see table 1). Appearance of numbers 8 and  9 we consider as a stop 

on one place. 

Table 2 shows trajectories of 10 histories for two-dimension random movement at N = 10. 

Due to  (8) we get that: 
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In this case the exact solution of the Dirihlet problem is known (7, 8): 
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This is a way we received the exact solution for U(2,2) applying the statistic method .  

 

Table 2. Trajectory of the motion for the working point 

 

Number of 

motion , k 

 

Trajectory of wandering 

Value of the 

function u(x,y) at exit 

point on the border G 

1 

(2,2)   >   (2,3)   >   (2,2)   >   (2,1) 

  > 

> (3,1)   >   (3,2)   >   (3,1)   >   (3,2

)   > 

> (2,2)   >   (2,3)   >   (2,3)   >   (2,2

)   > 

> (2,1)   >   (2,0); 

0 

2 

(2,2)   >   (2,3)   >   (3,3)   >   (3,2) 

  > 

> (4,2); 

2 

3 

(2,2)   >   (2,3)   >   (2,2)   >   (2,3) 

  > 

> (2,4); 

2 

4 (2,2)   >   (1,2)   >   (1,2)   >   (0,2); 0 

5 (2,2)   >   (2,3)   >   (2,4); 2 

6 (2,2)   >   (2,1)   >   (2,0); 0 

7 

(2,2)   >   (1,2)   >   (2,2)   >   (3,2) 

  > 

> (3,1)   >   (3,2)   >   (2,2)   >   (1,2

)   > 

> (0,2); 

0 

8 (2,2)   >   (1,2)   >   (0,2); 0 

9 

(2,2)   >   (2,1)   >   (2,2)   >   (3,2) 

  > 

> (3,3)   >   (3,3)   >   (2,3)   >   (1,3

)   > 

> (0,3); 

0 

10 (2,2)   >   (1,2)   >   (0,2); 0 

 



  

Conclusions. The article describes the process of mathematical design of the applied   tasks  

on the basis of  the use  of the Personal Cluster System. Experience of exploitation of the first 

parallel systems showed that their effective work needs the  radically change of  the structure of 

numerical methods. In this connection  this article shows the features of design of the applied tasks 

which are described on the basis of application of the Personal Cluster System. 

Nowadays it is possible to talk about the revival of the method   of Monte Carlo.  It is 

explained by the fact that this method ideally approximates the cluster system. Thus, the more 

processors will be in a cluster, the more effective the  task will  be solved. The method of Monte 

Carlo produced and continues to produce substantial influence on development of methods of 

calculable mathematics (for example, development of methods of numerical integration).It also is   

successfully solving  many tasks combined with other calculable methods and complements them. 

The method's application is justified, first of all, to the decision  of such tasks as admit assume of 

theoretical-probable description. It is explained by both : the tasks with the certain set probability 

and in tasks with probabilistic maintenance and substantial simplification of procedure of decision. 

The Monte Carlo method is also  used to solve   the multidimensional tasks of metallurgy.  

Slow convergence of method is its little  defect. However in this article we  show that with 

forming selective random numbers in relation to separate groups  the accuracy of  this method 

allows  to use it widely. 

In addition it was shown that the method of Monte Carlo is enough successful adjusted to 

solve  multidimensional tasks. For example, at applying the ordinary method for solving  the 

systems of linear algebraic equalizations for a calculation of one unknown value  it is necessary to 

define also the  other ones. In the Monte Carlo  method it is not necessary because at each time 

moment only one  necessary co-ordinate  is determined . 

Regional tasks and tasks with initial conditions for linear differential equalizations are one 

of the most interesting application of the  method of Monte Carlo. It became possible only due to 

the  development of the cluster computer systems. In this work the  examples of solution for  tasks 

of Newman and Dirihlet are made by means of  the method of Monte Carlo. 
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