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MATHEMATICAL MODELING OF THERMOPHYSICAL PROPERTIES OF
MATERIALS USING INVERSE METHODS

A proper class of the mathematical models had been deduced for investigating the thermophysical
properties of materials by means of reverse methods. Procedure for treatment of the mathematical models is
reduced to the extreme statement that allowed to develop the effective algorithms for solving the coefficient
problems of the optional order of accuracy. Results of the test problems solving on the basis of the offered approach
had been presented. A package of applied problems had been developed for solving the coefficient problems of the
heat-conductiving with the methods of mathematical simulation. Creation of package had been carried out
considering the requirements of the object-oriented programming. The simulation procedure had been realized on
the basis of application of multiprocessor computer system. The package of applied programs is intended for
treatment of thermophysical experiments with reverse methods.
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CYHIKO uinposcekuit neprkaBHuit arpapHO-eKOHOMiTHHIx
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MATEMATHYHE MOJIEJTTIOBAHHA TEILJIO®I3UYHUX BJIACTUBOCTEN MATEPIAJIIB
OBEPHEHUMH METOJAMUA

s Oocniodcentss MenioQizuuHux 61ACmMueocmell Mamepianie 0b6epHeHuUMU Memooamu 6UEeOeHUl
8I0N0GIOHULL  Kac mamemamuuhux moodenetl. Ilpoyedypa 00pobrku mamemamuynux mooeneli 36e0eHd 00
EeKCMPEeMAIbHOT NOCMAHOBKU, WO 00360JUN0 PO3POOUMU eEeKMUBHT ANCOPUMMU PO36'A3Y8AHHS KOepiyicHMHUX
3a680ay 008iIbHO2O NOPAOKY moynocmi. Hasodsmbcsa pe3yivmamu po3e'si3yeamnHs mecmosux 3a80ay HA OCHOSI
3anponoHo6an02o nioxody. Pospobneno naxem npuxiaouux npoepam Oisi po3e's3yeanHst KOe@QiyicHmHux 3a80ay
MeNnIoNpoOGIOHOCMI Memooam MamemMamuiyHo2o mooentoeanns. CmeopeHHs nakemy 6UKOHAHO 3 YPAXY8AHHAM
sumoz 06'ekmuo-opienmosanoco npocpamysants. Ilpoyedypa mooenroganns Oyna peanizo8aHa HA OCHO8I
3acmocysants b6azamonpoyecopHoi obuucoganvHoi cucmemu. Ilakem RpuKIaoHux npozspam npusHaveHutl Ois
00pOoOKU MenIoGI3UUHUX eKCRePUMEHMIE 00ePHEeHUMU MemOoOaMU.
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CVYIIKO [uenpockuii rocy1apcTBEHHbIH arpapHO-3KOHOMHYECKHT
YHHBEPCHTET

MATEMATHYECKOE MOJEJUPOBAHUE TEIMJIO®U3NYECKUX CBOMCTB MATEPUAJIOB
OBPATHBIMA METOJAMMU

s uccnedosanuss menaoQuUUecKUx —CEOUCME MAMepuanos OOPAMHbLIMU MemoOdMU  6bleedeH
coomeememeylowuil  Kiacc mamemamuyeckux mooenei. Ilpoyedypa o6pabomiu Mmamemamuyeckux mooeneil
c8edeHa K IKCMPEeMAIbHOU NOCMAHOBKe, 4MO NO380JIUNO paspabomams d(hhexmusnble aieopummbl peuleHusl
KO puyueHmublx 3a0ay NPouU380IbHO20 NOpsoka mounocmu. [lpueodsmces pesyibmamol peuteHuss mecmosbix
3a0ay Ha OCHO8e NpPeoNoACeHHO20 nooxoda. Paspaboman naxem npuxkiadnvix npozcpamm Oisi  peuieHus:
KO3 uyuenmubix 3a0ay menionpo8oOHOCHU Memooamu Mamemamuiecko2o mooenuposanus. Cozodanue nakema
BbINONIHEHO ¢ yuemom  mpebosanuil  00beKMHO-OPUEHMUPOBAHHO20 — npocpammuposanus.  IIpoyedypa
MOOenupoganus Ovlia peanu3o8aHd HA OCHOBE NPUMEHEHUs. MHOZONPOUECCOPHOU GbIYUCTUMENbHOU CUCTEMb.
Ilakem npuxiaouvix npocpamm npeoHasnawen 0isi 00pabomxu meniopuzuueckux KCHEPUMEHMO8 0OPAMHLIMU
Memooamu.

Kniouesvie cnosa: Koad)qbuuuenmnble 3610611{“, IKCmpemaibHas nocmaHoeKka, mamemamudecKue Modefm,
mel’lﬂOl’lpOGO()HOCmb, nepeHoc menjid.

Introduction



The problem relevance of developing numerical methods for solution of multidimensional systems of
parabolic quasilinear equations describing the processes of heat and mass transfer can be considered as undeniable
[1, 2]. One of the most interesting examples of such systems can be the equations of hydrodynamics and
metallurgical thermophysics. Apparently, the mass solution of non-stationary problems of high accuracy order at the
current level of technical capability and on the basis of traditional methods developed up to now seems to be
possible only in the following circumstances.

First, the advent of new and inexpensive communication means of the computing technology stimulated
development of new information technologies: structural programming, network operating systems, object- oriented
programming, parallel information processing systems, etc. The parallel processing organization of information
flows, the connection of parallelization problems with architecture of a personal computer (PC), parallel
programming systems, methods and algorithms of parallel computing are the key themes of the computer
technology development at this stage [3, 4].

Secondly, by now, certain trends have been emerged for development of computational methods with
complex logical structure, which have a higher accuracy order comparing to the traditional finite difference methods
[5,6]. Considerable progress in the solution of multidimensional spatial problems can be considered as a series of
proposals that are not entirely equivalent to each other, yet which pursue one stereotypical goal to reduce the three-
dimensional distribution problem of the variables change area to a sequence of schemes involving unknown
quantities in only one direction, alternately in longitudinal, transverse, and vertical. Thus, the adoption, as a
methodological basis, of difference schemes of splitting, firstly, ensures an economical and stable implementation of
numerical models by scalar sweep method. And, secondly, it is known that the greatest effect of a parallel processor
can be achieved when it is applied to perform matrix calculations of a linear algebra.

In this paper, the identification of heat conduction processes is considered on the equations solution example
of the heat conductivity in the Cartesian coordinate system for the area of y € [y,, yL], t € [0, ga). Obviously, for
given input data, this problem solution is simply realized by finite difference methods. Using the implicit timing
schemes and the central differences in the spatial variable, we obtain a system of linear algebraic equations (SLAE)
of a three-diagonal structure. Using the sweep method, we construct an economical difference scheme for solving a
direct problem. From this algebraic SM analysis, it follows that for the grid area of the sought-for function definition

yp,.p = m e Z in each Y - th grid node, the coefficients of

SLAE include discrete values A, 1, CVp 1. As can be seen, the number of unknowns A, 1, CVp 1 is twice the
number of grid equations. Such an unlocked SLAE, with known temperature values in the mesh nodes along a
spatial variable, can have an infinite set of solutions with respect to unknowns Ap 1, CVp 1. Hence, a purely formal
approach does not allow us to formulate a solution of IHC coefficient in the considered formulation.

Research problem statement

The research purpose is to derive the corresponding class of temperature and gradient simulation models for
research of the materials' thermophysical properties by reverse methods. The main research purpose is that the SM
processing procedure as those that are controlled by input parameters, reduce, on the residual principle basis, to an
extreme formulation. This approach allows to develop effective algorithms for solving quotient problems on SM of
arbitrary accuracy order with adaptation of time modes of a thermophysical experiment.

Hereafter, we shall assume that the one-dimensional formulation of the thermal conductivity problems is the
basic of a computational SM where there should be constructed the effective IHC solutions and algorithms for
experimental data processing for the material thermophysical characteristics determination.

Formation and analysis of simulations models of materials thermophysical properties definition

The problem solution could be obtained if the desired temperature dependences A(T ), Cy(T ) are
localized in the quadrants in the form of piecewise constant dependencies on temperature, both on the spatial
variable and on time, and as a SM, construct the temperature and gradient dependence. We show that for each such
spatiotemporal quadrant, the closed solutions of the original differential problem are effectively constructed by the
Cauchy problem solutions:
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where p = 1,2m -1 are the numbers of grid nodes in the spatial area y e[yo, yL ]; Tp 1(S), Tp 2 (Sy) are the Cauchy

data (temperature and flow) given at the nodes of the grid area with ;,= 0;a p is an unmatched grid
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For the p-th grid nodes distributed uniformly, the Cauchy problem solution allows constructing the closed
simulation models of unknown Cauchy data in the form of a system of ordinary differential equations (SODE).

Putting in (1) ;y = £1 we obtain the SODE of the N-th order:
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- continuous in the time area. For instance, with N = 1 we obtain a first-order SODE in the Cauchy form, where the
right-hand sides are assumed to be known functions of time. In this case, it is expedient to construct a solution in a
piecewise analytical form:

Tp,l(St)=Tp*,1(St)+(Tp,1(0)_Tp*’l(o))|.2apst
TD,Z(S’[) = Tp,Z(St) + (Tp’Z(O) _ TD,Z(O))L p

, Where {Tpl(;t), Tp2(st)} are particular solutions of inhomogeneous equations, {Tp 1(0), Tp2(0)} are known
initial data. In the more general case, for an arbitrary value of the integer parameter of N arrangement, it is expedient
to proceed from the differential equations (3) to a normal first-order SODE with a Cauchy form. Thus, the partial
differential equation integration is reduced to the first-order SODE integration in Cauchy form, which can be used to
solve the coefficient problems as those that are controlled by the SM in relation to the coefficients of heat and
temperature conductivity. It should also be emphasized that the inclusion of the integer N parameter in the SM as an
input value allows constructing the SM with an arbitrary accuracy order and an approximate order adoption.

The reduction of determination problem of materials' thermal-physical properties to extreme
formulation

One of the promising directions for processing heat transfer problems by reverse methods is to bring them
to extreme formulations by numerical methods of optimization theory. In the exact extreme formulation, the

definition of parameters A, 1 and CVp 1 on SM (3) or (4) will correspond to minimization of discrepancies in the
form of functionals:

Ipa(R) = (Ty"sy, R) - T (s, R))*Ip.2( R) = (Tp,2(%,



R) - Q(s, R))?

, Where R are the sought-for control parameters.

The Jp1, Jp2 values in space L, in such a formulation can be considered as functions of the variables R.
Their numerical value determines the distance in the functional space L, between the given f (S, R) , Q(e,, R)
quantities known from the experiment and that are being modeled by Tp 1 (S, R), Tp 2 (S, R) on the controlled SM
(3,4).

In each concrete case, on the basis of a priori information, it is possible to describe with some certainty, a
certain admissible set of input parameters R. Then, if we regard the SM as controllable, then the control parameters
should be selected so that the functionals (5) are minimal. If the the acceptable range for changing control
parameters are covered by Ry, grid nodes, then for their given values the functionals (5) can be calculated. Thus, the

{J(RF)} sequence is minimizing if the limit allows to determine its minimum. In the vicinity of the minimum, the
value of the functional can be represented by a Taylor series expansion:

+S
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where Sq = —— is the normalized argument of the function; Jy 2, Jy 3.... - are the Taylor's
Rv+1 Ry
components of the first and second order.
Retaining in the expansion (6) three summands and using the central differences for the Taylor components
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after taking the derivative and after equating its value to zero, it becomes possible to construct an interpolation
formula:

R=RA2)RFL-R)  [+d¥2 : (8)
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which allows arranging an iteration cycle. From this algorithm it follows that once the separation segment of the

sought-for control parameter {Rp+1, Rp.l}, is set, where the disparaty in the functional (5) changes sign, further
refinement of the control parameter in solving IHC can be refined recursively by formula (8) with any preassigned
accuracy.

Experimental data and the processing

An important stage of the research was to develop a package of applied programs (PAP) for the coefficient
problems solution of heat conduction by methods of simulation modeling [6]. The package was created taking into
account the requirements of object-oriented programming. The simulation procedure was based on application of a
multiprocessor computing system [7]. The PAP is designed for processing thermophysical experiments by inverse
methods. Its creation main purpose was to provide practical assistance to the researcher at all stages of experimental
data processing.

In this section of the research, additional conditions are considered allowing to divide the researched
problem into two: the temperature and flow. The first one allows solving the coefficient problems in the whole given
range of temperature variation with the control parameter in the form of the thermal diffusivity coefficient (model
1), the other is in the form of thermal conductivity or heat capacity (model 2). This approach corresponds to the
classical methods of technical thermophysics. The SM 1 and 2 research is carried out by the method of straight lines.
Moreover, model 1 (for example, algebraic or functional) and model 2 (gradient) allow solving the coefficient
problem in an extreme formulation. As a test problem, it was proposed to determine the thermophysical properties
of a particular industrial material [8]. The properties of coke made from gas coal were researched. For this, the



temperature field of a sample with the shape of a cylinder was simulated. When solving such a coefficient problem,
the following initial data were used: the thermal diffusivity coefficient ag = a, N= 5. The results of simulation
performed by means of a multiprocessor computing system are shown in Fig. 1. The solution of the coefficient
problem was carried out with control over the dimensionless coefficient of thermal diffusivity with R= a/ a,. From
the simulation results analysis (Fig. 1) it follows that the disparity minimum corresponds to the value of the
parameter R «1. The exact value of the control parameter R = 1. For the heat conduction problem from tabular data
JI= 0,16. Such a parameter identification is shown in Fig. 2.
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Fig. 1. The computation results graph of the coefficient problem with R= a/ a, the control parameter relative
to the thermal diffusivity coefficient
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Fig. 2. The computation results graph of the coefficient problem with R = JI the control parameter relative to
the thermal conductivity coefficient

The developed algorithm for solving the coefficient problem can be considered satisfactory, since its
version using exact input data absolutely coincides with the exact result of the analytical solution, and the errors in
the ccomputational results of the recovered causal characteristics, wherein included the input data error,
approximately equal the output data error.

Conclusions

The solution of the inverse coefficient problem in the proposed formulation is reduced to a direct
determination of the functionals values sequences (5) in simulation models (3) and the computation of the minimal
carriers in them Juin . The determination procedure of Jin can be implemented by simple sorting or **

by changing the sign J (a) * J (b) on the segment of R=a, R=b, where for the linear functional value (5) (a < b). It

is clear that J '(R) = O a separated segment R € [a,b] has a root. The values refinement of this root can be

realized with any preassigned accuracy in dependence (8) or, for example, by the chords or tangents method.

It should be noted that the partition of the total time interval into independent intervals with the solution of
inverse problems in each of them according to the scheme indicated above allows determining the unknown
parameters value as temperature functions T, 1(T). Therefore, the subsequent stage of processing experimental data



is to construct the temperature dependences Ap1(T), Cv(T) in the form of certain polynomial expansions of one
degree or another by the method of mathematical planning and regression analysis. At this stage, to verify and
establish the adequacy, it is advisable to use a discrete nonlinear SM within a full space-time interval.
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