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Abstract. The development of computer technology and information technology does not 

exclude preliminary analytical modeling in complex problems of mechanics. The approach 

proposed in this work allows one to obtain reasonable simplified equations that admit 

analytical or numerical-analytical solutions. Authors research are devoted to method 

elaboration for space problems of viscoelasticity. The approach for solving problems of 

nonlinear elasticity theory, when final deformations or physical nonlinear properties of 

materials are taken into consideration, is proposed. New perturbation method for solving of 

nonlinear equations in particular derivatives is suggested. Such approach is allowed to reduce 

the solution of complicated problems of linear elasticity and viscoelasticity to subsequently 

solved boundary problems of potential theory. New linear problems are investigated, in 

particular, problems on load transference from stringer to single layer or multilayer solids, on 

stress-strain state of fibrous composite with crack in matrix (plate and axisymmetric problems), 

numerous contact problems (pressing of hard stamp in an orthotropic plate with different 

anisotropy). Problems of nonlinear elasticity theory on stress-strain state of a plate with a 

circular hole under different types of loading are solved. 

Introduction.  
The problems of transferring loads from reinforcing elements to bodies with different properties are 

directly related to structural mechanics. Some issues of fracture of fiber-reinforced composites can 

also be considered. In this work, the formulation of the problem is complicated by taking into account 

the viscoelastic properties of the base material, which consists of two layers. Analytical solutions for 

spatial problems of this type are almost never found in the literature. Therefore, this investigation is 

асtual and can be useful for further numerical calculations. The works of many scientists are devoted 

to the methods of solving plane and axisymmetric contact problems on the transfer of loads from 

stamps, linings and other reinforcing elements to bases with different properties [1, 2, 7]. 

The aim of research in recent years is to take into account the complex properties of materials, which 

brings the mathematical model closer to real problems. For example, in [3], a method was proposed 

for solving the problem of electroelasticity for multiply connected plates. 

 

Building a mathematical model 

Consider an axisymmetric contact problem on the transfer of a load from a rod of circular cross-

section to a viscoelastic body, which consists of two orthotropic layers with cylindrical anisotropy 



attached to each other 

                      .,,,,0 12122111 hzzzzrhzhhz   

The rod is located perpendicular to the bounding plane, its middle line coincides with the axis

Oz .   

It is required to find the distribution law of contact stresses between the stringer and the body, as well 

as the forces in the stringer under the condition of its loading at the end points by longitudinal forces 
)1(

0P and )2(
0P (indices 1, 2 refer to the corresponding layers). At finite values 1h , 

2h from the 

equilibrium conditions )2(
0

)1(
0 PP  .  

Since in spatial problems for bodies with inclusions, the model of a one-dimensional elastic bar 

together with a contact model along a line is not used, it is assumed that there is a model of a one-

dimensional inclusion in combination with a contact model along a cylindrical surface for the base. 

Since the base material is viscoelastic with cylindrical anisotropy, and the problem is formulated 

taking into account the axial symmetry of the loading, then the stress tensor and displacement vector 

do not depend onQ  ( zQr cylindrical coordinates). 

 In this case, the problem is divided into two independent ones: the deformation problem, in which 

one displacement component is missing, and the torsion problem. The first of them is considered in 

detail. After applying the Laplace transform in time to the relationship between strains and stresses, 

the problem is reduced to integrating the equilibrium equations with respect to transformants for each 

layer  [5] 
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 under the following boundary conditions  
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)(0, aruc   

When 1hz   
the layers  transformants of displacement  are equal to each other. The same condition is 

fulfilled for stresses 1333, . All functions turns to zero  at infinity. The displacement of the bar c

satisfies the relations 

),0( 21 hhzz   

 

Here cu ,  are the transformants of the components of the displacement vector of the corresponding 

layers, 321 ,, EEE  ( G ) are analogs of the elasticity (shear) moduli of the materials of the layers, 

taking into account the functions that appear when taking into account the viscoelasticity,   

113EGm  .  

The value 1  is considered as a "small" parameter [4] in the asymptotic integration of the 

system (1). It is really small, since  it is a small value, and the function )( p
 
does not exceed unity 

for the difference creep kernels ( p is the Laplace transform parameter). 

),(2)( 13 zaazq   - the force of contact interaction between the bar and the layers, a is the radius 

of the bar. Since at ar   the displacement transformant u and the derivative zu   are equal to zero, 

)(22 zqdzdFE ccc  0PdzdFEN ccc  



then the stresses 13( a,z ) are completely determined only by the function z  :    

arraGzq  )(2)(   

To determine the effort in the stringer and the effort of contact interaction, the method proposed by 

the authors is used [4,5].  

After the decomposition of the stress-strain state into two components, the boundary value problem 

is reduced to the following  

for the first layer:   
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For the second layer, similarly.  

Note once again that the writing of equations through transformants coincides with the 

corresponding equations for an elastic material, since the additional functions that arise due to 

viscoelasticity are introduced into the coefficients (constants) in the equations. After applying to 

equations (2), (3) the Fourier cosine transform in the coordinate  z  with finite limits, we obtain 
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After applying the Weber transforms with respect to the coordinate r to equations (4) taking into 

account the boundary conditions, we obtain  

      



a

n drrrrfFFGnWhnnWna ,)()()(),()1(),(),(),(2 111
2
11

2*
1   





a

drrrnrnW ,)(),(),( *
11     )()()()()( 0000 rIaYrYaIr  

 
 YI ,   - Bessel functions of the first and second kind.  

After applying the inverse Weber transform and calculating some integrals, the need for the inverse 

Fourier transform remains. Dirichlet's theorem is used for this [6]. As a result, we get 
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For the second layer, the solution is carried out similarly, taking into account the change of 

variable    1hz  in the equations(3), (4). 

 

Main results and their discussions 

After estimating a number of integrals using the mean value theorem and taking into account the 

boundary conditions, we find the sought functions and their derivatives for two layers 
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  The load in the stringer )(zN and the load of contact interaction are according to the formulas 

arcc raGzqdzzadwFEzN  )(2)(,),()(   

If 02 h  then we come to the problem of transferring the load from the bar to the thickness 1h

layer. If  12   ,0 hh  then we obtain a solution to the problem of transferring a load to an 



orthotropic semi-infinite viscoelastic body. Such passage to the limit allows you to check the results 

obtained by the proposed method, since the simplified versions of the problem have already been 

solved. 

 The inverse Laplace transform determines  N and q  depending on the coordinates and time. To go 

to the originals, the effort is presented in the form of rows in a small parameter  which depends on

p  
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The coefficients of these expansions are easier to find for “small” and “large” values of the 

parameter. Such limiting values of functions can be connected using the Padé approximant [5]. 

For example, in the problem of transferring a load to a half-space, which has predominantly shear 

creep at p ,    pk / , for     ./  ,/  ,0 kkppp    

The originals of the functions for small values of time have the form 
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At large times  
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The expansion coefficients are found from (7) after replacing 0 by , 0g by g   for 
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Figures 1, 2 show the limiting values 0/ PNN   and 00/ gPqq   at 0t  (curve 1) and 

t  (curve 2). 

                      
Figure 1.   The core tension change                                  Figure 2. Altering contact efforts  
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Conclusions 

The practical significance of the results obtained lies in the possibility of using the proposed approach 

to construct reasonable simplified boundary value problems that bring the model as close as possible 

to the real problem. The results can be used for numerical implementation in the design of complex 

multi-layer structures from modern materials. The obtained solutions of the spatial contact problem 

can be used as exact solutions in the estimation of approximate computations.  
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