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ANALYSIS OF THE I N T E R A C T I O N  OF INERTIAL FORCES 
IN A STABILITY P R O B L E M  

A. G. Dem'yanenko and S. P. Kiba UDC 539.3:534.1 

Using the plane of characteristic radices we study the stability of an elastic filament with a distributed 
inertial load moving along it at cons tant  speed. Taking account of the Goriolis inertial forces and assuming 
the presence of dissipative forces, we carry out a qualitative analysis of the results for different relations 
among the parameters of  the system; this analysis is in agreement with the general stability theorems for 
elastic structures. 

As is known, the validity of an approach to solving the problem of stability of an elastic structure is 
determined by the nature of the system being studied. The classical engineering approach in such problems 
is based on the assumption that the model in question is a nongyroscopic conservative system. Consequently, 
the lack of agreement as to stability or instability may arise from imprecise assumptions on the nature of the 
forces, as well as their interaction in the given model. Thus, if the system is not purely nongyroscopic, simple 
static approaches are usually not valid [1], Moreover, even the dynamic method becomes dubious if physical 
nonidealities are not taken into account. The uncertainty in the initial assumptions can be compensated for 
by analyzing a specific simple system, which makes it possible to pass to certain generalizations applicable 
to more complicated systems, and caution is observed by the choice of this method of studying them. 

The object of study is an elementary mechanical system--an elastic filament with a distributed inertial 
load moving along it at a constant speed. Many papers devoted to the construction of the solutions of 
the differential equations that describe the motion of such systems and to the study of their stability are 
known. In view of certain complications in the application of the method of separation of variables to the 
equations of motion, and in order to simplify them, one sometimes resorts to different assumptions. The 
most typical is the assumption that the critical speed of motion of the load is much faster than real speeds; 
this assumption gives a basis for the researcher to simplify the equation by neglecting terms with mixed 
partial derivatives, one of which corresponds to the inertial Coriolis forces. Although there are grounds 
for such an assumption in many cases, so that we need not enter into a discussion of the validity of this 
approach, nevertheless the qualitative side of the nature of the interaction of the various inertial forces in 
mechanical systems of such a type is lost from view. 

We shall study the qualitative side of the general topic resulting from the influence of different forces 
(external and internal) on the nature of the oscillations of elementary mechanical objects belonging to the 
family of systems with a moving inertial load. 

The mathematical model of these elastic systems is the so-called generalized vibrating string equation 
[3] (Table 1). The mathematical model that takes account of the rotational inertia of sections was studied 
in [2]. All equations in the table can be written in the following dimensicnless unified form: 

. 

02u 2 02u 02u 
or2 + ~2~-~ + ~ 1 ~  = o. (1) 

The values of the dimensionless coefficients for all types of equations of the form (1) are given in Table 

The dynamic individuality of a linear vibrating system is characterized most completely by the charac- 
teristic frequencies and characteristic shapes of its vibrations. On the other hand, in practical applications 
it is no less important to establish which relation among the parameters of the mechanical system leads 
to a transition from stability to instability. Euler's method, which gives the correct solution in a number 
of cases, is universal in comparisonwith the more general dynamic method based on the vibrations of the 
system about a quasistatic equilibrium position. In this connection we limit ourselves .to the study of the 
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character of small vibrations, following [1]. Instead of the vibration frequencies we introduce the charac- 
teristic indices s connected with the frequencies by the simple relation s = iw, where w is the complex 
frequency. Equation (1) can be satisfied by a function of the form 

u(~o, t) = x c ~ ) e  t, (2) 

where X(x)  is a function that characterizes the shape of the vibrations. Substitution of the expression (2) 
into Eq. (1) leads to an ordinary differential equation 

"nX"  + 2s72X' + s2X = O, (3) 

We write the integral of Eq. (3) as 
x ( ~ )  = c~e k,~ + C2e .k~, (4) 

where kl and k2 are the roots of the characteristic equation analogous to the differential equation (3), 
and the solution (4) must satisfy the zero boundary conditions X(0) = 0, X(1) = 0, corresponding to a 
string with its ends clamped. The condition that the solution of Eq. (3) be nontrivial leads to the relation 
k2 - kl = 2nlri, whence 

= - (s) 
We shall study the behavior of the characteristic indices s .  under variation of the parameter V (the 

speed of the inertial load) that occurs in the coefficients "72 and 71- 
As can be seen from (5), all the characteristic indices, which remain purely imaginary as the parameter 

V increases, must vanish when 7i = 0, then change sign and, increasing in absolute value, become real 
when the condition 72 - 71 < 0 holds. 

Thus we obtain the critical values of the parameter 

V~ 9 = (( l /e)  - 1)c2; (6) 

v ;  2 =c~/~; (7) 
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Table 3 

Equation types 
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Remark. The instability for all types of equations is static: the region of uncertainty for (3) is VI* < V < V2*; for 
(4) it is V > 1"1"; for (5) it is V > VI*. 

and the remaining parameters of the system under consideration are assumed constant. The critical values 
of the speed V for all types of equations of the form (1) are given in Table 3. 

The behavior of the characteristic indices is shown in the figure. In the case of a string with a moving 
inertial load (type 3, Fig. a) the vanishing of the characteristic indices corresponds to "neutral" equilibrium, 
i.e., the presence of other nearby equilibrium shapes (in addition to the original equilibrium shape). At load 
speeds larger than VI* the characteristic indices, after passing through the origin into the lower half-plane, 
increase in absolute value and become infinite at V2*. This value of the speed also corresponds to the passage 
of the indices into the right half-plane. 

Thus the speed value VI* is critical in the sense of Euler. At a load speed larger than V2* the motion 
of the string will become an aperiodic recession from the equilibrium state. Consequently the given system 
is characterized by static instability with passage through the point at infinity [1]. 

The behavior of the characteristic indices with a moving string (types 4 and 5) is shown in Fig. b. For 
any value of the speed they remain on the imaginary axis. Passage through the origin at the speed VI* 
corresponds to loss of stability in the form of a branching of equilibrium shapes. The perturbed motion is 
oscillatory with constant amplitudes depending on the initial conditions. The behavior of the characteristic 
indices in the case ")'2 = 0, i.e., ignoring the Coriolis inertial force, is the same for types 3, 4, and 5 (Fig. 
c). The study of the simplified equation leads to the same result in all cases using either the static or the 
dynamic approach. Loss of stability occurs as a static instability. All the characteristic indices leave the 
imaginary axis at the speed VI*, i.e., the perturbed motion is aperiodic for all V > I/'1". 

The interaction of the Coriolis inertial forces with external resistance and their mutual influence on 
the stability of motion of the system under consideration is of interest. In studying this question we shall 
use the classical theory of the influence of external resistance on free and forced vibrations, which is based 
on the assumption that the resisting forces are linear functions of the speed of displacement of elements of 
the filament. 

When we take account of external damping, Eq. 1 assumes the form 

02u 2 Ou 02u 02u 
o7+ (8 )  

here 73 = hl/(c(p + pl)), where h is the damping coefficient relative to the total mass of elements of the 
filament and the moving load. Assuming a solution of Eq. (8) in the form (2) and repeating the computations 
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given above for the characteristic indices, we obtain the expression 

7172 ~2 
- ' (9) 

which makes it possible to trace the behavior of the characteristic indices as the parameter V is varied. 
The characteristic indices (9)form complex-conjugate pairs which, when they are in the open hag-plane 
of negative real values, move toward the origin as the speed of the load increases. At 71 = 0 each pair 
of indices coalesces at the origin and moves away from it into the open half-plane of positive real values, 

-moving~oward the-rea~a~is. Thu~the~ea! pavtofthe4ndicewremainwnegative for~lues~-the~paxamet~r 
V < VI*. At a certain value of the parameter V 

v 2 = �89 _ a . ,  (10) 

where c~n is determined from the condition of positivity of the expression under the radical in (9), some of 
them reach the positive real axis, and remain on it for higher values of the speed. In this case the transition 
of the characteristic indices to the right half-plane occurs through the origin at the parameter value VI* , i.e., 
the system in question is characterized by static instability. It is interesting that, at least for values of the 
parameter V near VI*, but larger than it, the motion of the string is oscillatory with increasing amplitudes. 
For values of the parameter V larger than the value defined by (10) the oscillatory motion is replaced by 
an aperiodic motion. For systems of type 4, 5 the transition of the indices to the right half-plane also 
occurs through the origin at the parameter value VI*. The subsequent motion is oscillatory with amplitudes 
increasing in time. 

This analysis shows that external damping decreases the stabilizing role of Coriolis inertial forces. 
For that reason, when studying the stability of such a system, it does not make sense to take account of 
both of these forces. Nevertheless, taking account of the forces just mentioned and others gives some idea 
of the post-critical behavior and makes it possible to predict the dynamic loss of stability in the case of 
moving objects of finite length (types 4 and 5). Since the static instability in these systems at V = VI* is 
independent of the dissipative and gyroscopic forces, the systems can be compared with the nongyroscopic 
conservative system obtained from them by ignoring these forces. Moreover, the stability of the system is 
very sensitive to all kinds of seemingly unimportant effects. This circumstance must be taken into account 
in interpreting the results obtained using approximate methods of solution or in the analysis of simplified 
models. The conclusions of this study are in  agreement with the general theorems on stability of elastic 
systems [4]. 
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