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Abstract 

A bi-material composed of two 1D piezoelectric hexagonal quasicrystals with a crack along the material interface was considered. 
Phonon and phason remote loading providing plane strain conditions were applied at infinity and an open crack model was adopted. 
Because electromechanical fields have an oscillating singularity at the crack tip, the energy release rate (ERR) is the most important 
fracture parameter in this case. The main purpose of this study is to define ERR in an analytical form. Using the obtained earlier 
asymptotic presentations of the phonon and phason fields at the crack tip and the crack closure integral approach, the desired 
formula is obtained in a simple form. The eligibility of the formula is verified by means of a crack in the bi-material composed of 
two 1D piezoelectric hexagonal quasicrystals and by considering a crack in homogeneous materials of this type. An additional 
comparison of the results obtained for a particular case of an isotropic material with known values confirmed the validity of the 
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branches of engineering and technology. The mathematical foundations of elasticity theory of quasicrystals (QCs) are 
presented in Fan (2016). Depending on the atom arrangement 1D, 2D and 3D quasicrystals can be considered (Steurer, 
Deloudi, 2009). Also, QC bi-materials with piezoelectric effect are used in smart structures.  

Different defects like holes, cracks and inclusions are the main reason of failure of quasicrystal devices. Three-
dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals were studied in Fan et al. (2016), and a 
penny-shaped dielectric crack in the quasicrystal plate of the same structure was considered in Zhou, Li (2019). Two 
asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional hexagonal piezoelectric 
quasicrystals were considered in Yang et al. (2017).  

It is worth mentioning that interface cracks in bi-material and multi-material components are the main cause of 
failure. The comprehensive review of interface cracks investigation in piezoelectric materials has been done in 
Govorukha et al. (2016) for tension loading and in Govorukha et al. (2015) for compressive one. However, the cracks 
between different QC materials have not been sufficiently studied till now. To our knowledge, an arbitrarily shaped 
electrically impermeable interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-
material was investigated in Zhao et al. (2017a, 2017b) by analytically-numerical method, and a plane problem for an 
electrically permeable interface crack in a 1D piezoelectric QC was studied analytically in Loboda et al. (2020). 
Besides, several articles related to anti-plane case of an interface crack in QC were recently published. 

A crack between dissimilar one-dimensional hexagonal piezoelectric quasicrystals with electrically permeable 
and impermeable conditions at the crack faces under anti-plane shear and in-plane electric loadings was investigated 
in Hu et al. (2019). Single and pair interface cracks with mixed conducting-permeable electric conditions in 1D 
piezoelectric quasi-crystalline space under the action of out of plane phonon and phason shear stresses and in-plane 
electric field were analytically considered in Loboda et al. (2021) and Loboda et al. (2022), respectively. The problem 
of multiple collinear electrically permeable interface cracks between dissimilar one-dimensional hexagonal 
quasicrystals with piezoelectric effect under anti-plane shear and in-plane electric loading was studied in Hu et al. 
(2021).  

The energetic approach to the analysis of 1D hexagonal QCs has not been developed sufficiently till now. We 
can mention on this subject the paper Sladek et al. (2015) in which path-independent integrals for crack problems in 
a homogeneous quasicrystal were derived. The importance of the energetic approach to an interface crack in QC is 
much larger than for a crack in a homogeneous case because of oscillating singularity of near-tip fields and 
impossibility of introducing the stress intensity factors in a conventional manner. Just the analytical determination of 
ERR for an interface crack in a piezoelectric QC is the main purpose of the present paper. 

2. Formulation of the problem and analytic solution 

Consider the plane problem in 1 3x x  plane for a crack 1a x a   , 3 0x   in the interface between two semi-
infinite 1D piezoelectric hexagonal quasi-crystalline spaces with point group 6 mm (Fig. 1).  

 

Fig. 1. A crack between two 1D piezoelectric QCs. 
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The constitutive relations referred to the Cartesian coordinate  1 2 3, ,x x x  with  1 2, 0,x x  coincident with the 
periodic plane and 3x -axis identical to the quasi-periodic direction have the form 
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The equilibrium equations and geometric equations are the following 

11,1 13,3 0   , 31,1 33,3 0   , 1,1 3,3 0D D  , 31,1 33,3 0H H  , (4) 

1
, ,2 ( )ij i j j iu u   , ,i iE   , 3 3,i iW W , (5) 

where , 1, 3i j   and the denotation “,” represents the derivative operation for the space variables; iu , 3W  and   are 
the phonon displacements, phason displacement, and electric potential, respectively; the atom arrangement is periodic 
in the 1 2x x  plane and quasi-periodic in the 3x -axis; ij  and ij  are the phonon stresses and strains, respectively; 

3iH  and 3iW  are the phason stresses and strains, respectively; iD  and iE  are the electric displacements and electric 
fields, respectively; the polarization direction is along the 3x -axis; ijc  and iK  are the elastic constants in the phonon 

and phason fields, respectively; iR  represent the phonon–phason coupling elastic constants; jke  and jke  are the 
piezoelectric constants in the phonon and phason fields, respectively; ii  are the permittivity constants. 

It is assumed that the crack is electrically permeable and uniformly distributed phonon  ,    and phason H   

stresses as well as electrical displacement D  are prescribed at infinity. The interface conditions can be written in the 
following form  

13 0   , 33 0   , 33 0H   , 0  , 3 0D   for 1a x a   ,  (6) 

13 0  , 33 0  , 33 0H  , 1 0u  , 3 0u  , 3 0W  , 0  , 3 0D   for 1 ( , )x a a  , (7) 

where f  means the jump of the function f  over the material interface. 
In Loboda et al. (2020) the following presentations were obtained  

(1) (1) (1)
33 1 5 33 1 1 13 1( , 0) ( , 0) ( , 0)j jx m H x im x    1 1( ) ( )j j jx x    , (8) 

1 1 1 3 3 1 5 3 1 1 1( ) ( ) ( ) ( ) ( )j j j j jn u x in u x in W x x x        , (9) 
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where ( )j z  are the functions analytic in the whole complex plane except the crack region  1 ( , )x b b  , 3 0x  ; 

5 5j jm S , 1 1j jm iS  , 1 1j jn Y , 3 3j jn iY  , 5 5j jn iY  , j jY S ρ ; 1,3,5j  ; j  and 1 3 5[ , , ]T
j j j jS S SS  are, 

respectively, the eigenvalues and eigenvectors of the matrix ( )T T ρ ρ  and ρ  is constructed of the matrix G  of 
dimension 5 5  by crossing out the second and fourth rows and columns; (1) 1G B D , (1) (2) (2) 1 (1)( ) D A A B B , 

( )mA , ( )mB  are matrixes similar to eponymous matrixes defined in Suo et al. (1992) ( 1m   corresponds to the upper 
material and 2m   – to the lower one).  

When obtaining relations (8) and (9), the continuity of stresses, electric displacements and electric potential along 
the whole material interface were taken into account. Due to this fact fourth row and column were excluded from the 
matrix G  and also the case 4j   from Eqs. (8) and (9). 

Due to (8) the conditions at infinity for the function ( )j z  can be written in the form 

1
1 5( ) | (1 ) ( )j z j j jz im m H     

      (10) 

Satisfying the interface conditions (6) by using Eq. (8), one arrives at the following problem of the linear 
relationship: 

   1 1 0j j jx x      for  1 ,x a a  ,  (11) 

with the conditions at infinity (10). 
According to Muskhelishvili (1975) the solution of this problem has the following form 

( ) ( )( )( 2 )j j j j jz X z i z ib       ,  (12) 

where 1/2 1/2( ) ( ) ( )j ji i
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1
j j

j

m H
r

     , 1 /j j jm r    , (1 )j jr   , 
ln
2

j
j





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 1,3,5j  . 
Substituting the solution (12) into the conjugate of Eq. (8) and integrated (9) we get 

(1) (1) (1)
33 1 15 33 1 11 13 1 1 1( , 0) ( , 0) ( , 0) ( )x m H x im x J x    , (13) 

(1) (1)
33 1 55 33 1 5 1( , 0) ( , 0) ( )x m H x J x   , for 1 ( , )x a a   (14) 

11 1 1 13 3 1 15 3 1 1 1( ) ( ) ( ) ( )n u x in u x in W x x   , (15) 

53 3 1 55 3 1 5 1( ) ( ) ( )n u x n W x x   for 1 ( , )x a a  . (16) 

The expressions of 1 1( )J x , 5 1( )J x , 1 1( )x  and 5 1( )x  are found with use of (12), but here only their asymptotic 
expressions are important and they are as follows: 

  1

1
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1 1 0 11 12 1( ) | ( ) i
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where 

   11 12 1 1 1 2 1 1 1 2 1(1 ) cos sin sin cos
2
aq iq d d i d d             , 3 52q a  , (19) 

1 1 1 12d      , 2 1 1 12d      ,  1 1 ln 2a  . 

   1
21 22 1 1 1 1 1 1 1 1

1

1 cos sin cos sin 2q iq i a        


           , 4 52 2q a  . (20) 

The phonon and phason stresses and displacements at the crack tip a  can be found from the systems (13), (14) 
and (15), (16), respectively. 

3. The energy release rate (ERR) 

According to the crack closure integral (Rybicki, Kanninen, 1977), the energy release rate (ERR) at a crack tip 
a  can be presented in the form 

           1 1
33 1 3 1 13 1 1 10

1lim ,0 ,0
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a l
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   

        1 (1)
33 1 3 1 3 1 1 1,0 ( ,0) ,0H x W x l D x x l dx        . (21) 

The last term in the integrand is equal to zero because of zero electric potential jump in the crack region. 
Substituting the above mentioned phonon and phason asymptotic expressions into (21) and performing the integration 
we arrive to the following formula for the ERR: 

 
   

2
21

1 2 3 5
1

1 4
8coshaG h h a h
 

 





  , (22) 

where 

55 55 53
1

1 2 11 11

1m n nh
p p m n


  , 2 11 22 12 21h q q q q  , 15 15 13

3
1 2

m n nh
p p


 , 1 55 15p m m  , 2 13 55 15 53p n n n n  . 

4. The numerical illustration and discussion 

Numerical analysis was performed for the bi-material composed of the piezoelectric QCs with the characteristics 
given bellow (Zhang et al., 2016). 

The upper material:  
elastic constants (GPa): 11 150c  , 12 100c  , 13 90c  , 33 130c  , 44 50c  , 1 0.18K  , 2 0.3K  , 1 1.50R   , 

2 1.20R  , 3 1.20R  ;  
piezoelectric constants ( 2C m ): 31 15 0.160e e   , 33 0.347e  , 15 0.138e   , 33 0.350e  ;  
dielectric constants ( 9 2 -1 -210 C N m ): 11 0.0826  , 33 0.0903  .  (22) 
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The lower material: 
elastic constants (GPa): 11 234.33c  , 12 57.41c  , 13 66.63c  , 33 232.22c  , 44 70.19c  , 1 122K  , 2 24K  , 

1 2 3 0.8846R R R   ;  
piezoelectric constants ( -2C m ): 31 4.4e   , 33 18.6e  , 15 11.6e  , 15 1.16e  , 33 1.86e  ;  
dielectric constants ( -9 2 -1 -210 C N m ): 11 5  , 33 10  . (23) 

The variation of the ERR at the right crack tip for 1 MPa   , 0H   , 100 mma   and different values of 
the remote shear stress    are presented in Fig. 2. Line I corresponds to the bi-material mentioned above, lines II and 
III are drawn for the particular cases of the homogeneous material with the characteristics equal to the lower and upper 
materials, respectively. It can be seen that the ERR for the composite material are approximately equal to the mean 
value of the energy release rates for the homogeneous materials which characteristics are equal to those of each 
components of the composite. 

The similar variation of the ERR for 1 MPa   , 0   , 100  mma   and different values of H   are drawn 
in Fig. 3. Line I corresponds to the bi-materials (22) and (23), lines II and III are obtained for the same cases of the 
homogeneous material as in Fig. 2. It is interesting to mention that usually the values of ERR increase with increasing 
of H  . However, this growing is rather weak in the whole considered interval for the homogeneous material (22) 
(line II), it is almost constant in the interval  0,0.5  for the bi-material case (line I) and the ERR even decreases at 
the initial section of the considered region for the homogeneous material (23) (line III). 

 

Fig. 2. The variation of the ERR N/m  with respect to the remote 

phonon shear stress   ( Pa ). 

 Fig. 3. The variation of the ERR ( N/m ) with respect to the 

phason stress H  ( Pa ). 

To confirm the correctness of the obtained results we found the ERR for the case of homogeneous QC with 
characteristics (23), in which we assumed 13 94c  GPa , 33 234.33c  GPa , 1 2 3 0R R R    and all piezoelectric 
constants approximately equal to 0. In this case we got the uncoupled isotropic material with Young’s modulus 

180E  GPa  and Poison’s ratio 0.286  . The calculation of the ERR for such material with 1 MPa   , 0  

, 0H    and 100 mma   gives 1.598G  N/m . This value completely coincides with the known analytical result 

obtained on the formula    221 /a E    . By the way the value of the ERR for this loading and homogeneous 
QC with characteristics (23) is 1.527 N/m (see line II of Fig. 2). 

5. Conclusions 

The problem of electrically permeable crack between dissimilar 1D hexagonal quasicrystals with piezoelectric 
effect is considered. Mixed mode phonon and phason loading and electric displacement can be prescribed remotely 
from the crack. The main attention is devoted to the analytical determination of the energy release rate at the crack 
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tip. For this purpose the analytically obtained asymptotic expressions of electromechanical components at the vicinity 
of the crack tip together with the crack closure integral approach are used. The energy release rate is found exactly in 
the form of very simple formula (22). With use of this formula the ERR for the bi-material composed of two specific 
quasicrystals is found with respect to the external loading variation. Besides, the values of the ERR for homogeneous 
quasicrystals are also found, and comparison of the obtained results is made. It is particularly shown that the ERR for 
the composite material are approximately equal to the mean value of the energy release rates for the homogeneous 
materials, the characteristics of which are equal to those of individual components of the composite. Conformation of 
the validity of the obtained formula (22) for the ERR is done by means of consideration of particular case of equivalent 
characteristics of the upper and lower materials, the piezoelectric and coupling phonon-phason constants of which are 
equal to zero and, moreover, the phonon material constants correspond to isotropic material. The excellent agreement 
of the ERR in this case with known analytical result is discovered. 
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