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The complex action of environmental factors often triggers the biomass formation in forest plantations, which is crucial 
for carbon balance and environmental monitoring, especially in the context of climate change. In this article, we present 
data on the aboveground biomass accumulation for black locust and common pine (Pinus sylvestris and Robinia pseudo-
acacia) as the two most common forest-forming species in the steppe zone. For this purpose, we propose a reliable ap-
proach to monitoring of aboveground forest biomass with combining Sentinel-2 multispectral imaging techniques (with L-
band) and biometric processing data from coniferous and deciduous stands obtained from field surveys. We represent the 
results of field surveys with established indicators of aboveground biomass of forest plantations in the field experiment, 
which averaged 159.9 ± 9.0 t/ha in the studied region. The biometric indexes obtained from the field experiments were used 
to develop models for predicting biomass using the remote method. Based on the processing of satellite image data, forest 
vegetation indices were analysed, among which the NDVI (normalized difference vegetation index) was the best predictor 
to assess biomass. The multiple regression method was found to be the best for predicting and mapping the aboveground 
biomass in P. sylvestris and R. pseudoacacia within the studied area (RMSE – 23.46 t/ha). Based on the results obtained, 
we created a map of the aboveground biomass distribution in black locust and common pine stands within the studied 
region. We established reliable correlations between biometric parameters (mean diameter at breast height, mean height) 
and aboveground biomass of stands with indicators of spectral bands in satellite images. This enables us to use the con-
structed models to estimate the overall productivity of coniferous and deciduous forest stands for large areas.  

Keywords: biomass; NDVI; multispectral images; Pinus sylvestris; Robinia pseudoacacia; multiple regression method.  

Introduction  
 

Determination of plant biomass combines the methods with the use 
of allometric assessment in field condition and remote sensing approach. 
Estimation of aboveground biomass with biometric measurements gene-
rally has the advantages of good to excellent accuracy (Bolyn et al., 2018; 
Luo et al., 2020; Zhang et al., 2022). But obtaining information for a large 
area is impossible in this case, while real-time monitoring is disabling. 
Recently, the combination of the methodology of assessing vegetation 
biomass using aboveground data and modelling of the obtained indicators 
is considered to be the most promising research method. The models then 
can be used to calculate the same indicators and handle them using satelli-
te imagery.  

The first moderate-resolution earth surface observations under the 
Landsat program were performed with the Landsat 1 satellite that was 
launched in 1972 (Markham et al., 2012). A detailed description of the 
satellite types and their historical development was presented by Li et al. 
(2020). Most of these satellites can be used to assess inorganic elements in 
soils and vegetative parts of plant communities. Early studies on biomass 
assessment using Landsat were carried out in structurally simple tempera-
te and boreal forests. As early as that time, vegetation indices were the 
most commonly used approach in optical remote sensing for estimating 

biomass (Ahamed et al., 2011; Demol et al., 2022). Calculations of most 
vegetation indices are based on the relationship between red and near-
infrared wavelengths. This maximizes the spectral contribution of green 
vegetation and minimizes the influence of soil, sun angle, etc. (Guerra-
Hernández et al., 2022).  

However, to date, no remote sensing satellite has provided direct 
measurements, estimates, and mapping of aboveground forest biomass 
(AGB) (Le Toan et al., 2011; Quegan et al., 2019), though the National 
Aeronautics and Space Administration (NASA) (GEDI) Global Ecosys-
tem Dynamics Study aims to monitor ecosystem dynamics and fluctuati-
ons in carbon fluxes around the world (Dorado-Roda et al., 2021). In most 
studies, biomass values measured in field surveys are used to develop 
models for predicting AGB values by linking biophysical parameters ob-
tained from remote sensing data (Abbas et al., 2020; Lovynska et al., 
2024). Most of the coarse and medium spatial resolution datasets, such as 
MODIS, Landsat, and ASTER, provide the potential to estimate AGB at 
various scales (from subnational to national, regional, and global levels) 
(Brandýsová & Bucha, 2013). At the same time, the application of mixed 
pixels and coarse or medium spatial resolution data is problematic for esti-
mating aboveground biomass, and the estimated areas have a complex envi-
ronment with mixed tree species in forest canopy (Lu, 2006). That is why 
it is better to use high-resolution satellite data for evaluation and mapping. 
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At the local or subnational level, high-resolution satellite data can provide 
better results in mapping of aboveground biomass (Hussin et al., 2014).  

The issue of vegetation assessment (mainly in forests) and above-
ground biomass restoration is quite well solved with remotely sensed data. 
A number of methods are known for this purpose:  

– empirical, physical, and mechanical modelling based on spectral 
indices and X, C or L bands radar data (Tian et al., 2023), as well as on 
data from airborne lidar (Ferraz et al., 2016), and terrestrial lidar (Demol 
et al., 2022);  

– linear regression (Jos et al., 2021), multiple linear regression (Nu-
thammachot et al., 2018), nonlinear regression (Piestova, 2015; Naik et al., 
2021) with satellite and airborne measurements, including lidar (Zaki 
et al., 2016) and multipolarization radar data (Huang et al., 2018; Zaitseva 
et al., 2021);  

– advanced machine learning techniques such as support vector ma-
chine (SVM), random forests (RF), gradient boosting (GB), and Bayesian 
regularization network (BRN) (Huang et al., 2023);  

– deep learning methods have recently been widely used (Schreiber 
et al., 2022; Pascarella et al., 2023).  

The aboveground biomass of Scots pine and black locust has been 
extensively studied worldwide where these species are spread (Shuprano-
va et al., 2022). Along with the common oak, these two tree species are 
still among the most common forest-forming species in the Steppe zone, 

in particular, within Dnipropetrovsk region. There are only few studies  
devoted to estimating the aboveground biomass of the above-mentioned 
species for a given region, especially using remote sensing techniques 
(Lovynska et al., 2021).  

In this article, we have reviewed remote sensing methods based on 
the use of field analysis with aboveground biomass determi-nation. 
The article focuses on a comprehensive assessment of the biomass in 
forest stands, with the possibility of implementing the obtained develop-
ments at the national and global levels. The aim of the work was to assess 
the aboveground biomass of forest stands formed by Scots pine and black 
locust using a combination of field and remote methods.  
 
Materials and method  
 

Study area. The study area is located in artificial Scots pine and black 
locust stands in different parts of Dnipropetrovsk region (47–49 °N; 33–
37 °E), Ukraine (Fig. 1). In this area of Steppe zone, the climate is tempe-
rate continental with mild winters. In Dnipro region, the amount of snow 
is small enough but summer usually is hot and dry with frequent down-
pours and strong southern winds. Average annual temperature is 
10.6 °C, and annual total precipitation is 400–490 mm (Gulchak et al., 
2011; Pakhomov et al., 2019; Shupranova et al., 2019; Holoborodko 
et al., 2021).  

  
Fig. 1. Geographic extent of the study area within Ukraine (right up corner) and the map of the forest distribution  

in Dnipropetrovsk region with indicated temporally sample plots  

Assessment of aboveground biomass of forest plantings in field sur-
veys. The study was divided into two stages: field and laboratory conduc-
ted during 2016–2022. During the assessment of above-ground biomass, 
we used convenient methods of forest taxation in the study. The areas of 
studied temporary sample plots (TSP) were laid in stands of Scots pine 
and black locust in Dnipro region within the Northern Steppe zone of Uk-
raine. The selection of representative forest sites was carried out in accor-
dance with the methodology developed by Lakyda (2002). We conducted 
the field surveys in the summer at 40 sites based on the random sampling 
method (Table 1). TSPs with investigated forest-forming species (Scots 
pine and black locust) had sizes from 0.11 to 0.50 ha and the stands’ 
relative density varied in the range of 0.41–0.97 (Table 1).  

The investigated TSPs were located in 6 enterprises within the res-
ponsibility of the State Agency of Forest Resources: Obuchivsky – 
10 plots, Novokodazkuy – 3 plots, Pereschepunskuy – 3 plots, Vasilkov-
skiy – 10 plots, Verchnedneprovskiy – 6 plots, Novomoskovskiy – 
8 plots. The size of each plot was 50 × 50 m. The forest stands in the test 
sites were artificial in their origin, differed in the types of forest-growth, 
microclimatic and edaphic conditions. Methodological features of deter-
mining the biomass of individual trees and stands of Scots pine and black 
locust by land method in the conditions of the Northern steppe are descri-
bed in detail in our previous works (Lovynska et al., 2018; Sytnyk et al., 
2018). We determined the mean diameter, height of stands, and abovegro-
und biomass of forest plantings at the experimental plots. The mean dia-
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meter of plantings ranged from 20.7 to 29.1 cm, the height of stands from 
19.7 to 22.4 m, and aboveground biomass from 190.4 to 372.3 t/ha (Table 2).  

Table 1  
Characteristics of temporary sample plots (n = 40)  
used in the field experiment on aboveground biomass estimation  

No. Longitude Latitude TSP  
area, ha 

Relative 
density 

Share of P. 
sylvestris in 

stand, % 

Share of R. 
pseudoacacia 
in stand, % 

1 35.167389 48.342110 0.30 0.94 99 – 
2 34.854222 48.528430 0.20 0.65 100 – 
3 34.859614 48.526470 0.20 0.88 19 56 
4 34.847392 48.532980 0.12 0.68 94 2 
5 34.854464 48.459720 0.11 0.96 80 20 
6 35.676472 48.638190 0.25 0.68 100 – 
7 35.682611 48.638530 0.25 0.69 100 – 
8 35.669481 48.639440 0.25 0.50 100 – 
9 35.632944 48.639580 0.25 0.61 100 – 
10 36.495331 47.979610 0.25 0.48 100 – 
11 36.498928 47.980690 0.25 0.49 100 – 
12 36.496142 47.980790 0.25 0.64 100 – 
13 36.497050 47.982190 0.25 0.52 100 – 
14 35.319861 48.733210 0.25 0.57 94 – 
15 35.311572 48.728130 0.20 0.62 99 – 
16 35.313294 48.727430 0.25 0.41 71 – 
17 35.312397 48.727060 0.25 0.59 96 – 
18 35.316769 48.726280 0.25 0.44 83 – 
19 35.319086 48.725300 0.25 0.74 100 – 
20 34.831289 48.543790 0.20 0.94 96 4 
21 34.268214 48.683355 0.16 0.56 – 96 
22 34.157935 48.601896 0.25 0.88 – 100 
23 34.301818 48.576827 0.20 0.63 23 47 
24 34.810506 48.549710 0.40 0.94 – 100 
25 34.882752 48.551487 0.25 0.65 58 22 
26 34.811727 48.463877 0.50 0.73 – 100 
27 35.255684 48.235826 0.49 0.82 – 100 
28 35.171605 48.385719 0.25 0.81 – 94 
29 35.375852 48.779874 0.50 0.71 – 100 
30 35.481280 48.762827 0.25 0.85 – 95 
31 35.168827 48.259421 0.25 0.78 – 100 
32 35.114996 48.318306 0.29 0.91 – 100 
33 33.384473 47.966465 0.18 0.97 – 100 
34 33.317399 47.517307 0.25 0.77 6 96 
35 36.571884 48.014880 0.25 0.71 3 97 
36 36.707130 48.092811 0.25 0.88 – 100 
37 34.226736 47.730595 0.25 0.82 – 100 
38 36.141024 48.440580 0.25 0.72 – 100 
39 36.359748 48.463647 0.25 0.58 – 100 
40 34.562085 48.640617 0.25 0.67 – 100 

Table 2  
Biometric measurements of trees  
within Scots pine and black locust plantations  

Location,  
number of plots 

Number 
of trees 
per ha 

Mean diameter 
at breast  

height, cm 

Mean  
height,  

m 

Above-
ground 

biomass, t/ha 
Obuchivsky (n = 10) 740 29.1 20.7 372.3 
Novokodazkuy (n = 3) 456 20.7 21.8 234.6 
Pereschepunskuy (n = 3) 632 23.5 21.8 217.4 
Vasilkovskiy (n = 10) 765 23.5 22.4 346.8 
Verchnedneprovskiy (n = 6) 520 24.4 21.5 190.4 
Novomoskovskiy (n = 8) 516 21.5 19.7 209.2 

 

Remote sensing assessment of aboveground biomass in forest planta-
tions. The Sentinel-2 mission provides multispectral images with a revisit 
interval of 5 days and is particularly well suited to determining vegetative 

indices (Vis), which can be used to easily translate into aboveground bio-
mass. The SNAP software provided by the European Space Agency 
(ESA) for processing Sentinel-2 data includes a special biophysical pro-
cessor capable of Vis.  

Here, we used 4 bands of the L2A product of Sentinel-2A multispect-
ral satellite system. Multiple regression between AGB and spectral reflec-
tance vector ρ(B) in bands B2 – blue (460–520 nm), B3 – green (540–580 
nm), B4 – red (650–680 nm), B8 – near infrared (780–900 nm) of 10 m 
resolution imagery was applied to the study area within woodland of Dni-
propetrovsk region, Ukraine.  

Multivariate regression in the form AGB = A×ρ(B)+c, where {A, c} 
is the regression parameters vector, was restored from the Sentinel-2A 
multispectral image for 11/23/2019 using ground truth measurements at 
40 independent spaced geopoints. Input vector – ρ(B) in our case, there 
was a set of Sentinel-2A spectral signals in each individual pixel of the 
image (P is the Earth's Surface Print, B is the band, or the operating 
spectral range.  

In our study, we used such vegetation index as Normalized Differen-
ce Vegetation Index (NDVI) to build regression dependencies of AGB. 
In NDVI, the difference between the near-infrared (NIR) and red spectral 
bands, which is sensitive to vegetation’s chlorophyll content and photo-
synthetic activity, is quantified (Théau et al., 2021; Vahidi et al., 2023). 
Therefore, NDVI strongly correlates with biomass, and it used the most 
frequently for estimating aboveground biomass of plantations.  

Data processing and statistical analysis. We conducted the statistical 
analysis using the least squares method in R program. Calculation of band 
values obtained by remote sensing was conducted with using the open-
source package SciLab. The correlation between aboveground biomass 
and biometric indexes at plot level and values of spectral characteristics 
were measured with the Pearson correlation coefficient, at a significance 
level of 0.05. We carried out the search for the most relevant and 
statistically reliable models which describe the dependences of abovegro-
und biomass on the value of light reflection from the surface in different 
spectral ranges (B2, B3, B4, B8). The obtained statistical characteristics 
and developed models are presented with coefficients of determination 
(R2) and p-value. The difference between investigated values was determi-
ned by univariate analysis of variation (ANOVA) followed by the HSD 
Tukey Test at a significance level of P < 0.05, using IBM SPSS Statistics 
26 software.  
 
Results  
 

The values of the diameter at breast height within stands ranged from 
3.9 to 30.2 cm, the height of stands ranged from 17.2 to 38.8 m, and the 
values of aboveground biomass ranged from 6.2 to 400 t/ha (Table 3). 
The mean diameter of forest stands was 19.3 cm, the mean height of 
stands 17.2 m, relative density 0.7 (704 trees/ha), and aboveground bio-
mass 160 t/ha. According to statistical analysis of biometric parameters 
and spectral characteristics of bands, the skewness index included both 
positive and negative values and ranged from –2.116 to 3.163, while for 
kurtosis, the values ranged from –0.418 to 3.569.  

We detected high (P < 0.01) correlations between the mean height 
and the mean diameter of the stand, the mean height and aboveground 
biomass, aboveground biomass and spectral value of the B2 band 
(Table 4). Moderate correlations were established between the density of 
plantings with mean diameter and mean height of stands, spectral value of 
B2, B3, B4, B8 bands with mean diameter and height of stands.  

Table 3  
Summary statistics for aboveground biomass (t/ha) in P. sylvestris and R. pseudoacacia plantations within Dnipropetrovsk region (x ± SD, n = 40)  

Summary statistics Diameter at 
breast height, cm 

Mean  
height, m 

Number of  
trees per ha 

Aboveground  
biomass, t/ha B2 B3 B4 B8 

Mean value ± SD 19.3 ± 7.2 17.2 ± 6.7 735 ± 357 159.9 ± 9.0 251.2 ± 57.6 326.3 ± 99.8 305.4 ± 96.2 1901.1 ± 534.8 
Coefficient of variation, % 37.8 38.8 48.6 61.9 22.9 30.6 31.5 28.1 
Minimum 3.9 2.8 416 6.2 143.0 167.0 120.8 981.7 
Maximum 30.2 30.5 1980 400.3 377.8 581.0 536.6 3053.1 
Skewness –2.116* –1.378 3.163* 2.022* 1.057 2.502* 1.347 1.225 
Kurtosis –0.335 0.102 3.569* 0.258 –0.418 0.913 0.331 –0.062 
Note: *statistically significantly different at P < 0.05; B2 – blue, B3 – green, B4 – red and B8 – near infrared bands.  
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Table 4  
Pearson correlation coefficients between biometric indexes of forest plantation and satellite image bands (n = 40)  

Biometric indexes Diameter at breast height, cm Mean height, m Number of trees, stem/ha Aboveground biomass, t/ha 
Mean height, m 0.927 – – – 
P 10–4 – – – 
Number of trees, stem/ha –0.482 –0.352 – – 
P 10–3 2.6·10–2 – – 
Aboveground biomass, t/ha 0.765 0.840 –0.262 – 
P 10–3 10–4 1.02·10–2 – 
B2 0.577 0.626 –0.096 0.836 
P 10–4 10–4 5.5·10–2 10–4 
B3 0.620 0.686 –0.254 0.889 
P 10–4 10–4 1.1·10–2 10–4 
B4 0.518 0.579 –0.165 0.827 
P 6·10–4 1·10–4 3.1·10–2 10–4 
B8 
P 

0.617 
10–4 

0.662 
10–4 

–0.209 
1.9·10–2 

0.827 
10–4 

 
 

Determination coefficient of multiple regression was R2 = 0.938 with 
a root mean square error (RMSE) of 23.46 t/ha, which is a reasonably 
good result (Fig. 2). The aboveground biomass estimation for the forest 
distribution within investigated study area is presented in Figure 3. 
The creation of a map of the distribution of aboveground biomass was 
carried out in accordance with the map of forests of Dnipropetrovsk regi-
on based on the shape files available for this area. In order to show the 
aboveground biomass accumulation in more detail, we selected one of the 
studied forest districts shown on an enlarged scale.  
 
Discussion  
 

Climate change, extreme events, in particular changes in precipitation 
and increased drought frequency, have a significant impact on the preva-
lence and structural characteristics of forests. In addition to these unfavo-
rable factors, forest stands (in particular, Scots pine and black locust) in 
Ukraine are now exposed to the catastrophic impact of current military 
operations caused by Russia and their already existing consequences. 
Taking into account that pine and black locust stands cover about 60% of 
forests and perform important sanitary protection functions (Sytnyk et al., 
2018), mapping these areas to identify changes in aboveground biomass is 
important primarily for management solution.  

  
Fig. 2. Predicted/observed multiple regression dependence  

of aboveground biomass in Scots pine and black locust stands (n = 40)  

 

 
Fig. 3. Spatial distribution of aboveground biomass within Obuchivka forestry  

Numerous studies have been conducted to evaluate and develop bio-
mass functions for P. sylvestris and R. pseudoacacia in various countries 
around the world (Repola, 2009; Repola & Ahnlund Ulvcrona, 2014; 
Rusnak et al., 2022). Until now, it is considered that the destructive me-

thod is the most accurate for determining tree biomass, but it is quite clear 
that it takes unnecessarily long and is very expensive. In fact, the develop-
ment of allometric ratios has been put into practice to reduce the cost of 
forest and the level of its destruction, as well as to assess carbon reserves in 
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the stand. As single studies show, biomass assessment models developed 
for P. sylvestris and R. pseudoacacia provide valuable information for es-
timating aboveground biomass at both tree and plantation levels (Repola, 
2009; Lovynska et al., 2018; Lovynska et al., 2022). First of all, the stem 
diameter at a height of 1.3 m is a reliable predictor for estimating the abo-
veground biomass of individual trees with a small margin of error (Wegiel 
& Polowy 2020). At the plantation level, when developing models for es-
timating productivity and biomass accumulation in pine and black locust 
plantations, the stand density and root area were important indicators as 
independent variables. In particular, high-density stands was found to cau-
se an increase in the biomass of stands and a decrease in the biomass of in-
dividual trees because of competition for limited resources (West, 2014).  

In this study, to build a model within selected plots in Scots pine and 
black locust forests, we calculated aboveground phytomass using stem 
diameter, tree height, wood density, i.e. parameters widely used in field ex-
periments by researchers from all over the world (Fassnacht et al., 2021). For 
this purpose, we used the multivariate procedure as an effective method 
for regression models, despite the imbalance of data in terms of variable 
response, that is, in the case when not all components of biomass were 
measured on sample trees. Based on the proven statistical relationship 
between biomass equations, the multivariate procedure has some advanta-
ges over equations evaluated independently (Repola & Ahnlund, 2014).  

We developed a simple approach for monitoring changes in Scots 
pine and black locust plantations in the temperate zone by combining land 
data with the results of Sentinel-2 satellite images. We analyzed the 
sensitivity of various Sentinel-2 indices and ranges. Compared to other 
sensors, Sentinel-2 has three spectral bands with a red-edge region, which 
are highly sensitive to the content of chlorophyll and nitrogen and do not 
depend on structural properties (Clevers & Gitelson, 2013; Grabska et al., 
2020; Rusnak et al., 2022).  

It should be noted that today there is quite a significant amount of data 
on the biomass of tree stands, which is obtained using remote methods 
(Lesiv et al., 2019; Myroniuk et al., 2020, 2022). Some of them are focu-
sed on individual zones on the regional/landscape level of Ukraine (Holia-
ka et al., 2021; Zadorozhniuk, 2023). However, such studies are only re-
presented in a small number for Dnipropetrovsk region (Lovynska et al., 
2021). The proposed methodology uses data and open-source software for 
processing of images and algorithms to estimate the biomass of forest 
stands with preliminary modeling of the data obtained in field experi-
ments.  

In this work, we used the principles of constructing linear and nonli-
near dependencies using such spectral bands as B2, B3, B4, and B8 to 
model the aboveground biomass of plantings. They were most correlated 
with the biomass values obtained in field experiments. Those particular 
data of these spectra are widely used by researchers to estimate biomass 
(Askar et al., 2018; Khan et al., 2020). At the same time, it should be noted 
that the authors often add indicators of spectral bands B5, B6, B11, and 
B12 to the listed ones (Fassnacht et al., 2021). It is believed that the accu-
racy of calculating individual vegetative indicators, and therefore the indi-
cator of aboveground biomass, may increase in this case. It should be no-
ted that in the course of previous calculations during our studies, we detec-
ted no improvement in the accuracy of the regression model when using 
the listed additional spectra, so they were not used in constructing the 
corresponding models.  

Regression equations of both linear and nonlinear forms are often 
used to calculate the biomass of plantings (Vahidi et al., 2023); we also 
used these equations in our research. The accuracy of using such models is 
often similar, or can be higher/lower.  

The most accurate model obtained in this study described the biomass 
of stands using multiple regression (R2 = 0.94; RMSE = 23.46 t/ha) and 
slightly different from data obtained by authors who used similar metho-
dological approaches to estimate pine forest structure and map the above-
ground biomass by processing Sentinel-2 images (RMSE = 40.16 t/ha) 
(Puletti et al., 2019; Fassnacht et al., 2021). Similar to our results, the 
above-mentioned researchers estimated biomass in forests relatively 
uniform in structure, where the stand height can often be accurate predic-
tor (Tojal et al., 2019). When evaluating single-storeyed forests, the multi-
ple linear regression method can also provide a more accurate estimation 
of the volume reserve of Scots pine, in particular, compared to the random 

forest (RF) method when using Sentinel-2 (Hawryło & Wężyk, 2018). 
The biomass of plantings can be estimated with even greater accuracy if 
the time shift between the acquisition of field data and structural remote 
sensing data is smaller (Navarro-Cerrillo et al., 2017).  

Improving the accuracy of regression equations can be associated 
with the use of other methods of statistical analysis and modeling, and, 
moreover, with the addition of data obtained from additional resources, for 
example, satellite images from Sentinel-1, Landsat-8. In addition to me-
thods for building the regression dependencies, the machine learning algo-
rithm has recently been used to more accurately estimate the aboveground 
biomass of stands, using RF, Support Vector Regression (SVR), and Arti-
ficial Neural Networks (ANN) techniques (Vahidi et al., 2023; Vyvlecka 
& Pechanec, 2023; Velasco Pereira et al., 2023). Adding the SAR variable 
extracted from Sentinel-1 images to the SVR model improved the accura-
cy of the model, being a valuable set of source data related to the structure 
of plant objects (Nuthammachot et al., 2020). In some cases, data obtained 
in processing of satellite images from SAR provide more accurate estima-
tes of forest structural variables, with approximately 15–20% of root-
mean-square deviation for the AGB estimation and 5–10% of root-mean-
square deviation for the mean stand height values (Martin et al., 2021; 
Guerra-Hernández et al., 2022).  

As with the correlation analysis data obtained by us, a significant 
number of studies (Brown et al., 1989; Sousa et al., 2015; Gonçalves et al., 
2017) were found that, combining remote sensing data from satellite 
images of various spatial resolutions with spectral ranges in the visible re-
gion (Blue, Green and Red) and the infrared region (Nearinfrared) and/or 
vegetation indices) with field data, have a strong correlation with above-
ground biomass. The revealed correlations between the equations of ran-
dom parameter allow information to be transferred from one equation to 
another, which is especially useful in calibration of the model for a new 
stand (Repola, 2008).  

Overall, as some researchers have pointed out (Adam et al., 2020; 
Ziemer et al., 2023), the results of aboveground biomass modeling using 
biometric indicators, in particular, stand height, for different types of fo-
rests can be improved by replacing the widely used LIDAR, Sentinel-2 sa-
tellites with TanDEM-X SPC CHM (canopy height model), which better 
corresponds to the data obtained in the field. However, access to the high 
spatial resolution CHM model is still cost-limited and requires participati-
on of aerial campaigns, that are expensive or impossible (Jin et al., 2020; 
Fassnacht et al., 2021), Unfortunately, this model is difficult to apply in 
rural areas and, in general, in many economically less developed countri-
es, including Ukraine. But satellites such as LiDAR (Li et al., 2017), 
Landsat (Wang et al., 2019), Sentinel-1 (Naidoo et al., 2019), Sentinel-2 
(Filho et al., 2020), etc., can be used alternatively, with a worldwide data 
source available for obtaining models of biomass dependencies for plant 
communities.  

It should be considered that the described study is limited, since the 
developed models are specific to P. sylvestris, R. pseudoacacia and are 
limited to the area under study. Therefore, when applying the presented 
models, other factors should be taken into account, in particular, such as 
terrain conditions, tree age and characteristics, which can significantly af-
fect the assessment of stand biomass. However, in general, in the perspec-
tive of applying the described integrated approach, we should agree with 
Vyvlecka & Pechanec (2023), who noted that currently there are still not 
enough data in the public domain with very high resolution to accurate 
estimation of the parameters in forest stands. It means the lack of data that 
meets the criteria for very high spatial resolution, near-infrared, thermal in-
frared, weekly time resolution, and free data access. Of course, addressing 
these issues will be an important step in further monitoring of the biomass 
in forest stands.  
 
Conclusions  
 

As our research showed, the mean diameter of forest stands ranged 
from 20.7 to 29.1 cm, the mean height from 19.7 to 22.4 m, and abovegro-
und biomass from 190.4 to 372.3 t/ha. The search for correlation depen-
dencies revealed the presence of strong reliable relationships between the 
taxational parameters of stands as mean height, mean diameter, and abo-
veground biomass, as well as between aboveground biomass and spectral 
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value of B2 band. As regression analysis has shown, the dependencies of 
aboveground biomass on spectral characteristics are best described by 
multiple regression and the exponential model. Determination coefficient 
of multiple regression was R2 = 0.938 with RMSE of 23.46 t/ha. Based on 
the results of multiple regression between AGB and spectral reflectance 
vector in bands B2, B3, B4 and B8, we built a map of the aboveground 
biomass distribution for Scots pine and black locust stands within the stu-
dy region.  

Comparison of obtaining data from aboveground biomass of Scots 
pine and black locust plantings using field and remote experiments revea-
led minor deviations in accordance with RMSE indicators, which indica-
tes the possibility of applying the developed regression equations in low-
land forests. Our obtained results represented a significant step towards the 
development of a monitoring system for assessment of aboveground bio-
mass in coniferous and deciduous plantations growing in the conditions of 
Steppe zone with use of multispectral satellite images.  
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